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CHAPTER I

THE NEGLECT OF QUANTITATIVE SYNTHESIS IN

FEEDBACK CONTROL THEORY

1.1 Introduction

The flight control problem is one of regulation and control despite

parameter uncertainty and disturbances. The pilot has a number of control

variables (elevator, aileron angles, etc.) available. The mathematical

relations between these control inputs and the output variables he wishes to

control, are highly nonlinear. The parameters are functions of Mach (M) and

dynamic pressure (N) and are not precisely known even if M and N are

accurately measured. In addition, his objectives are not always the same.

For example, in the longitudinal mode he is primarily interested In accelera-

tion when violently maneuvering, and in pitch angle when aiming at a target.

Wind gusts are external disturbances whose effects must be controlled.

There is no complete synthesis theory as yet for this problem. Classical

linear time-invariant feedback theory (Nyquist and Bode plots, root locus,

etc.) has been a useful tool based, of course, on the highly approximate

linear time-invariant model. Describing function theory has been helpful for

the stability problem. But these tools are obviously far from satisfactory.

They must be accompanied by extensive simulation and cut and try modifications.

They have worked because of the ingenuity of practical designers and the

* inherent power of feedback, but a great deal of cut and try design is essential.

Certainly, in this field, theory has lagged far behind practice.

.
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1.2 A Quantitative Problem

A primary reason for this sad state Is due to the almost total neglect

of a quantitative! feedback synthesis theory. After all, feedback Is used to

achieve desired outputs despite uncertainty. Should not the extent of the

uncertainty enter Into the design? For example, suppose the plant (constrained

part of the system) has the transfer function

s 2 + A Is + 1 (.)

with uncertainties in k ,A, B given by

k [1,10] , A1 I [-2,4] , B1 I [2,8] (1.2)

Suppose that in a completely different problem, the plant P2 (s) has exactly

the same form but with k2 [8,10] , A2 c [2,3] , B 2 e [4,6] . Suppose also

that the output performance tolerances are the same for both, e.g., the.

system step response must lie within the solid laine bounds shown in Fig. 1-1,

for all plant parameter values in the above intervals. Common sense suggests

that the two designs should be significantly different. There is much more

uncertainty in the first plant. The "amount of feedback" it needs should

certainly be much more than in the second problem. But classical design

theory ignores this problem. One presumably emerges with the same design for

both problems. It is as if the mere use of feedback suffices to scare both

plants into the desired behavior.

Consider a variation of the above problem. Suppose the uncertainties

of the two plants are the same, but the output tolerances are different;

e.g., for one (a) they are the dashed-line bounds in Fig. 1, and the solid

ones for the other (b). Commo n sense suggests that design (a) should need

-2-



I less feedback and therefore be more economical In some sense than design (b).
However, again classical feedback theory cannot cope directly with this

problem except by cut and try, because it has no quantitative design techniques.

Modern state-variable design theory also ignores this quantitative prolem.

It too has concentrated on design to achieve a desired output for a fixed,

known plant transfer function. It offers no design technique for the above

problem of Fig. 1, and this includes the recent work on robust design. It

too must resort to cut and try.

This is indeed a very sad situation. Feedback is used primarily to

achieve desired output tolerances despite uncertainty. But the extent of

the uncertainty and of the tolerances do not appear at all as design parameters

in the vast majority of the synthesis theories. Thousands of papers and hun-

dreds of books have been written on the subject, but one hardly finds anywhere

a quantitative problem statement. By this is meant a quantitative statement

of the uncertainty as in Eq. (2), and a quantitative output tolerance statement

as in Fig. 1. This makes it practically Impossible to compare design tech-

niques, especially the so-called adaptive techniques which claim to be superior

to "conventional" techniques.

However, as described in Chapter 2, quantitative design techniques have

been developed in the last eight years which can cope directly with the

quantitative problem given by Fig. 1 and Eqs. (1,2). Hence, if one comes

* forth with claims for "superior" design techniques, he should be challenged

* to prove his claims quantitatively. He can do this only by applying his

technique to a quantitative problem, and comparing it to a design based on

the methods of Chapter 2. In fact, the references noted there contain many

design examples, which can be used for this purpose. It is scandalous that

1. -3-



the proponents of "adaptive" design and of "modern" design theories have

failed to provide such quantitative proofs of their claims.

The quantitative techniques described in Chapter 2 are devoted to single

input-output linear time invariant (lti) uncertain plants. This constitutes a

significant improvement over conventional nonquantitative techniques, classical

or modern. But the flight control problem is a multiple input-output nonlinear

problem with large uncertainty, so the methods of Chapter 2 are also inadequate.

However, there have recently appeared two breakthroughs. The first extends

quantitative synthesis rigorously (no approximations) to nonlinear uncertain

single input-output systems. The method is outlined in Chapter 3, and is applied

in Chapter 4 to a single-axis flight control problem. The second breakthrough

extends quantitative synthesis to lti multiple input-output systems with large

uncertainty. It may be combined with the first breakthrough, to permit quanti-

tative synthesis of highly uncertain nonlinear multiple input-output feedback

systems (Chapter 5 and Appendix 1). The result is a powerful synthesis tool,

ideally suited to the multi-axes nonlinear flight control problem.

|° Figure 1-1. Two sets of bounds on step response

-4-
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CHAPTER 2

QUANTITATIVE FEEDBACK SYNTHESIS THEORY FOR

LINEAR TIME INVARIANT SINGLE INPUT-OUTPUT SYSTEMS

2.1 Origin and Tools

Modern quantitative synthesis theory Is based to a significant extent

on the work of Bode [1] in single-loop amplifier systems. Bode emphasized

that the reason for using feedback was to control the plant sensitivity

function. There is only one in the single-loop system, and it controls the

effect of parameter uncertainty and external disturbances. Bode showed the

central role of the loop transmission function L(s) and intensively

studied the properties of L(s) on the frequency axis, s - jw . Unfortu-

nately, classical feedback control theory and modern control theory even more

* so, have neglected the work of Bode. His contributions are still not

appreciated by most control specialists, especially that the essential price

of feedback is in the bandwidth of the loop. The loop bandwidth may have

* to be hundreds of times greater than the control bandwidth, depending on the

extent of uncertainty and the tolerances on the output (recall Chapter 1).

in one extreme (no uncertainty) the ioop bandwidth can be zero, i.e. feedback

is not needed at all. In fact, this is a good test of a feedback synthesis

technique: What is the bandwidth of the loop transmission when there is no

* uncertainty? If it is not zero, then the design is not "tuned" to the

specifications and is therefore wasteful in loop bandwidth, It is noteworthy

how the relation of ioop bandwidth to sensitivity is neglected in classical

control and even more so in modern state-variable design theory. Bode showed

that loop bandwidth reduction is a central challenge in feedback theory, and

is the proper motivation for nonlinear feedback compensation. Thus, an

11.. -5-



adaptive technique should justify itself by achieving the same quantitative

tolerances for the same quantitative uncertainty, by means of a slower

(smaller bandwidth) loop transmission.

2.2 Frequency Domain vs. State-Domain

It follows from the above that frequency response is a natural tool in

linear time-invariant feedback synthesis. There are several reasons.

Numbers 1, 2, 6 apply to system theory as a whole.

(1) The transfer function of a cascade of two blocks Pl(s) , P2 (s)

is the product PIP 2 (s) , with their parameters thus remaining separate.

But the differential equation for their cascade connection is a complicated

mixture of the individual ones, with their respective parameters all mixed

up. If one wants the product PIP 2 (s) to have the properties of some

desired function G(s) , and if PI is fixed P2  free, then obviously

P2 (s) - G/PI(s) is easy to determine. This is not so if the cascade

combination is expressed in differential equation form. Similar properties

apply to other kinds of interconnections.

(2) Desired system properties are relatively easily stated in the

frequency domain, which is also insensitive to the order of the system.

They are much less easily formulated as coefficients of a differential

equation, whose number and properties are furthermore very sensitive to

system order.

(3) In feedback theory, loop bandwidth is the price paid for sensitivity

reduction, which is a frequency domain parameter. The equivalent in the time

domain is the speed of the impulse response of the loop transmission and this

is very opaque in a state-variable formulation. Integral equations would be

a much more logical time-domain formulation for feedback purposes, but for

the next reason.

-6-
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1(4) In the problem posed in Fig. 1-1, one- wants to control the response

at every t The response at t - tI is a function of all t < tI , the

convolution of (uncertain) functions for all t < tI . The problem would

not be so bad if one were interested in only a few ti values, but as noted

it is for all t1  values. In the frequency domain the analogous problem

is to control the response to be within certain bounds (see Section 2.3,

Figs. 2-la,b) for all w, so frequency w replaces time t in the above.

However, the behavior of the function at w is very loosely linked with

its behavior at all other w values. The constraint of analyticity of the

s-domain function is much, much easier to bear than the convolution constraint

in the t-domain.

(5) The nonminimum-phase property, as noted by Bode, is crucial in

feedback design. It is explicit and obvious in the w-domain, but opaque

and hidden in the t-domain, whether in state-variables or in integral

equation form.

(6) System theory differs basically from physics, chemistry and the

specialized engineering disciplines in that it deals with the interconnection

of devices and the overall system properties as functions of the input-output

properties of the deviceq. Its great pride and boast is that it can do

precisely this (i.e., control the system's input-output relations), with no

need for study or even understanding of the equations and natural laws

governing the mechanisms of these individual devices. The device can have

a thousand internal states but if its connection to the overall system is

via only a single input and a single output, then the system theorist needs

only the single equation relating these two variables. What is the point of

cluttering up the formulation with the thousand internal variables? The

essence of good engineering is simplicity and economy of representation, in

1';. -7-
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order that one may see the forest from the trees. The problems are usually

difficult enough without this unnecessary clutter.

(7) It has been argued that the state-variable description is more

accurate and fundamental. Obviously, it is more detailed, but why does this

make it more fundamental? The latter is a subjective concept related to

one's objectives. As George Zames has noted, that in pursuing this argument

a quantum mechanical description is far more accurate and "fundamental" than

state-variable.

(8) Much has been made of the concepts of "controllability and

observability" as a justification for the state-variable description and

methodology. But it has been shown [2] that a system can be controllable and

observable, and yet is totally inadequate for proper control. Thus, these

concepts can be highly misleading. Also, it has been shown they are not at

all needed even for what they purport to do, if one formulated the problem

with the concept of uncertainty.

(9) Much has been made of the fact that the Laplace transform is

unavailable in linear time-varying and in nonlinear systems, whereas the

state-variable formulation is universal. To this the answer is, "So what?"

The objective is synthesis, not mere formulation. Quantitative techniques

with deep insight, for the synthesis of uncertain systems to satisfy quanti-

tative performance specifications, are available in the transform domain,

for linear time-invariant systems. They are not available by state-variable

methods. Of what value is a universal formulation if it cannot cope with

the quantitative uncertainty problem even in its simplest category-- the

linear, time-invariant one.

-8-



Ironically, transform concepts have led to precise quantitative design

techniques for both time-varying and nonlinear systems [3-51. The application

of such a technique to the flight control problem is, in fact, the main

theme of this report.

It should be emphasized that there are areas in system theory where the

state-variable formulation is the natural one, e.g. in optimal control if

the realistic cost function is indeed a function of all the states. It is

not our purpose to derogate state-variables, but rather to present honestly

the role of frequency response in quantitative feedback theory. In such a

presentation one naturally contrasts it with stale variable theory. At least

our presentation gives detailed arguments, whereas frequency-response is

generally cast aside by state-variable enthusiasts, with hardly any detailed,

reasoned discussion. Also, our argument is not against state-variable

formulation per se, but to the synthesis technique that is used thereafter.

2.3 Translation of Time Domain into Frequency Domain Specifications

In the synthesis techniques listed next, there is always a constrained

Plant which is described by a system of differential equations whose para-

meters are uncertain, giving a set of plant functions P = {P} . Thus in

Eqs. (1.1, 2), each parameter combination gives a different P c P . The

3ame design philosophy can be used for sampled-data systems [6].

The objective is to achieve certain apriori specified performance

objectives V P E P .If the overall system is to be linear time-invariant

(lti) even if the plant itself is nonlinear, it can be characterized by its

response to any input, and the step response is very popular because it

combines within it both the fastest kind of input (an abrupt change) and the

slowest (no change). Time domain specifications are reasonable in many cases,



as in Figure 2-1a, where the step response is to be inside the bounds

bilb 2 V P c P , with additional bounds of similar nature on the first and

1.2 '
upper-----,
bound/ -...

0.9-
I/ /-lower bound

c(?) M / b2
0.6-

I I
I I

0.3 -
0 II

0 / I I i I

0 2 4 6
Time

Figure 2-1a. Time domain step response specification.

perhaps higher derivatives. Our design technique is in the frequency-domain,

so we must translate such t-domain bounds into "equivalent" W-domain bounds

on the system frequency response T(jw) . If the system is minimum-phase

[6], IT(jw) suffices and we restrict ourselves here to such systems.

This translation is, as of this date, an engineering art rather than a

science. Advice on how to translate is scattered in the literature [7-9].

Very good results have been obtained with only moderate effort. We shall

assume in this work that the translation has already been done. It is worth

noting that it has been shown [4] that for minimum-phase systems, time-domain

specifications on the step response and on its derivatives of the following

nature

b2i)(t) < c(i)(t) < b(i)(t), I- 0,1,...,n t C [0,-) (2.1)(2.1

-10-11%
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Figure 2-lb. Frequency domain specification.

can always be satisfied by means of w-domain bounds of the following nature

2 (w) < lT(jw) l < B I (W) (2.2)

Hence, it is guaranteed that there exist w-domain bounds of the form of

Fig. 2-lb, which satisfy time-domain bounds of the form Eq. (2.1).

An example of time-domain bounds and their equivalent w-domaln bounds

is shown in Figs. 2-1c,d. Fig. 2-1c also shows the simulation results

obtained from the design, which was incidentally a multiple-loop one (see

Section 2.7), for the structure of Fig 2-13b. Such good correlation between

t and w domain bounds are not atypical.

I",. -11-
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2.4. The single-loop two-degree-of-freedom system [7]. (Fig. 2-2)

Here the plant output c(t) is assumed measurable and available for

feedback and so Is the command input r(t) . The processing of these two

signals provides two independent compensation functions to the designer.

An infinitude of canonical two-degree-of-freedom structure may be used [6].

The design procedure developed in [71 used Figure 2-2a, but suppose the

D
M(t) F G X P

-I

(a) A

D
(t)F G X P

CMi

-H (s) N

(b

Figure 2-2. Structures of 2- D.O.F. system.

sensor transfer Function is H(s) , then one can use Figure 2-2b; letting

G H (of Figure 2-2b)) = G (of Figure 2-2a)), in order to have the same

loop transmission Function L(s) = GP = GIPH, and FIG I  FG in order to

have the same system transfer function

C(s) =r(s) = FGP FIGIP (2.3)I +GP I +GIPH

-13-



2.4.1 A 2-degree-of-freedom structure with 2-loop implementation

Suppose large loop feedback bandwidth is needed and it is found that an

independent sensor measuring t(t) (e.g., a tachometer in a position servo)

gives less noise than the differentiation of a position sensor, so both

sensors are used, as in Figure 2-3, with the two sensor transfer functions

Hi , H2 , and say the structure in Figure 2-3 is used. This is a two-loop

t) Fb Gb Go P C (t)

N1

-HI
N2

-H 2

Figure 2-3. 2-loop, 2-D.O.F. structure.

structure physically, but in terms of fundamental feedback design it is a

two-degree-of-freedom system, so the quantitative design theory of Figure 2-2a

is used, giving G and F . It is required that the loop transmission around

P , be the same in both cases, i.e.,

L = PG (Fig. 2-2a = P[Ga (Hl +GbH 2)]  (2.4a)

and

GP GbGaP
T F G---p-'P (Fig. 2.2a = F G+P G a P (2.4b)

I + GP b I+ P IG (H I
so

G= Ga(H I +GbH 2) , FG = FbGbG a  (2.4c)

.h. 4

-14-
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Hi s H2  are known, so one must decide how to split G - Ga(H + GbH 2) between

Ga and Gb This is done by considering the effect of sensor noise N, , N2

at the plant input,

Ga (H N +2b )

XN( jW) - a (NI +H2GbN2) (2.5)
1 + P[G a(H + GbH 2)]

given that

G (j ) - G (H +H2G (2.6)
P.(w a 1 2 b) 26

is fixed by the quantitative design technique of [7].

The objective is to minimize f' IXNI 2 dw , subject to the above con-

straint. This is a straightforward optimization problem which can be solved

outside the realm of quantitative feedback synthesis. The latter only provides

the design with the feedback loop transmission (L) needed around the plant,

and the prefilter (F) needed to process the coaumnd input r(t). The state-

of-the-art in sensors and in filter synthesis determines how L and F are

to be realized. In fact, in the above context one might consider use of an

accelerometer in a 3-loop feedback structure. But from our point of view

the structure remains that of a two-degree-of-freedom system and we shall

continue to associate the latter with a single-loop system. The single-loop

design technique is the basic building block for all the other more complex

structures, so it is next reviewed.

2.4.2 Review of Two-Degree-of-Freedom Quantitative Design Theory

Figure 2-2a is used with T - F + GP It is assumed that the compen-

sation networks, whose power levels can be very low (as the plant contains

j the power elements), can be constructed with negligible uncertainty in their

transfer functions. Hence, due to the uncertainty in P

-15-
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LP L L GP

An i = A n - = A Zn - Gi (2.7)

and

An I(w)I a A )n L(jjW) (2.8)

Given that the specifications require that AknlT(jw)I < 6 db at w in

Figure 2-1b, what are the resulting constraints on L(jw I) 7 It is convenient

to pick a "nominal" plant P0 (s) , and derive the bounds on the resulting

"nominal" loop function L0 = POC . These bounds can be found by means of

a digital computer, but it is very useful for insight to see it done on the

Nichols chart (logarithmic complex plane with abscissa in degrees, ordinate

in decibels = 20 log 10 ). The procedure is illustrated for the case

ka

F(s) = ka ; k E [I,101 , a E [1,101 , (2.9)
s(s +a)

and say I, = I , a = 10 are chosen as nominal, giving P0 = 0I/(s(s* 10)).

At w = 2 rps, F(j2) lies within the boundaries given by AECD in Figure 2-4.

Since Zn L = Ln G + ,n P , the pattern outlined by ABCD may be translated,

but not rotated, on the Nichols' chart, the amount of translation being given

by the value of in G(j2) - For example, if a trial design of L(j2)

corresponds to the template P(j2) at A'B'C'D' in Figure 2-4, then

G(j2) db IL(j2)tdb- IP(i2)Idb

= (-2.0) - (-13.0) = 11.0 db

Arg G(j2) - Arg L(j2) - Arg P(j2)
(2.11)

= (-6o') - (-153.4') = 93.40

-16-
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0-

0\

-1634! -120i ARG L (DEGREES) 1-46

Figure 2-4. Derivation of bounds on L (jw) on Nichols chart.

2.14.3 Bounds on L0(jw) in the Nichols chart

The templates of P(jw) are manipulated to find the position of L0(DOW)

which results in the specifications of Figure 2-lb on kn IT(Jw)l being

satisfied. Taking the w =2 template, one tries, for example, positioning

it, as shown in Figure 2-4, at A'B'C'D' . Contours of constant knIL/(O+L) I
are available on the Nichols' chart. Using these contours, it is seen that

the maximum change in Zn lT is, in this case, very closely

(-0.49)' (-5.7) = 5.2 db , the maximum being at point C' , the minimum

at point A' .Suppose that the specifications tolerate a change of 6.5 db

-17-



at w - 2, so the above trial position of ILO(J2)W is in this case more

than satisfactory. The template Is lowered on the Nichols' chart to A"B"C"D',

where the extreme values of njL/(I+L)I are at C" (-0.7 db) , A" (-7.2 db).

Thus, if Arg L0 (j2) - -60*, then -4.2 db is the smallest magnitude of

LO(J2) which satisfies the 6.5 db specification for A kn ITI . Any larger

magnitude is satisfactory but represents over-design at that frequency.

The manipulation of the w = 2 template is repeated along a new vertical

line, and a corresponding new minimum of jL0 (j2)1 found. Sufficient points

are obtained in this manner to permit drawing a continuous curve of the bound

on L0 (j2) , as shown in Figure 2-4. The above is repeated at other frequencies,

resulting in a family of boundaries of permissible Lo(jW)

2.4.4 Nature of the bounds on Lo(JW)

A typical set of bounds is shown in Figure 2-5. The bounds tend to

move down in the Nichols chart (become less onerous), obviously because as

w increases, greater change in IT(jw)I is permitted, as in Figure 2-lb.

However, they may cross and even temporarily move up higher with increase

of w . It is in fact essential that at large enough w, the uncertainty

in IT(jw)l (i.e., the bounds on jT(jw)j ) be greater than the uncertainty

in P(jw) , because the net sensitivity reduction is always zero in any

practical system as was long ago [1] shown by Bode,

M= - f nil+L(jw)l dw = 0 (2.12)
0 0

T 3T/T
where Sp= tP- is the sensitivity function.

kaIn the above examples as w =, P 2 so A nIPI A Zn(ka) 40 db.
s

Note in Figure 2-lb that the permitted A ZnjT(jw)I >> 40 db as w > 50

-18-
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-360* -24C7 -1200 QO

DEGREE

Figure 2-5. Typical bounds on L0  in Nichols chart.

Such large tolerances on IT(ji)I at large wo are tolerable because

IT(jw)I is negligible at large w, e.g., if IP(Jw)l can change at most

by 40 db at large w but IT(jw)I changes by 52 db, who cares if this

52 db change is from ITImin - 10-6 to IT Imax - 400 x 0"6 . In return,

one can concentrate the sensitivity reduction over the bandwidth of T(jW)

Thus, although IP(Jw)l in this region varies by say 40 db, IT(jw)I may

be controlled to vary by only 4 db , or 0.04 db if desired.

a,.1

1.. -19-
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2.4.5 Universal high-frequency (UHF) boundary

As noted, in the high-frequency range A 9nlT(jw)l must realistically

be allowed to be >> A Zn!P(ji)i , and this is reflected in the bounds on

Lo(jw) tending to a very narrow pencil Bp  in the arithmetic complex plane
0 V

k.
(if P0 - n as s - oo ) as in Figure 2-6a and as in 2-6b in the Nichols'

es
chart. In Figure 2-6b, the boundary BP  is drawn for the case

V

Figure 2.6a. Typical bounds on Lo(Jw) in complex plane.

A n L = M n k = 20 db , A nIT(jw)j = A nfL/(l+L)i < 23 db at wV

However, the resulting peak value of IL/(I+L)I is 23 db = 14.1 arithmetic

at k - kmax , indicating a highly under-damped pole pair at the corresponding

-20-
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frequency with damping ratio , 0.034 , when k kmax This tremendous

peaking does not appear in the system response to the command inputs R

because it is filtered out by the pre-filter F in Figure 2-2a. But the

system response to a disturbance D in Figure 2-2a, is given by

T d __5 ()+L)- . Disturbance attenuation generates its own requirements

on L, which may lead to more stringent bounds on L than those due to

T(j ) The final contours used in the design [7] must be the most stringent

20

Bii

0-

ILl (DB)

composite j z-60

contour " I :-12 0

-20 m 20DB

BK -7 ARG

-40
-2400 -1800 -120P -60c

L L (DEGREE)

Figure 2-6b. Bounds on Lo(Jw) on Nichols' chart
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composite of the two. However, even if D is very small, it Is usually

certain that a peak ITdi of 14.1 is intolerable. It Is reasonable to add

a requirement < y a constant, for all w and over the whole

range of P parameter values. The resulting constraining contours denoted

by Bh are shown in Figure 2-6b for the case A 1n k - 20 db , and for

y = 2.3, 3.5, 5 db (all those contours are symmetrical with respect to the

vertical Arg L - -180* on the Nichols' chart). If Y - 5 db is used,

then B(wv) indicates the composite contour shown in Figure 2-6b. For

w> , , T(jw)I increases while y remains the same, so that sooner or

later there is reached a frequency w B(w) = Bh(Y) , V w > wy. This

boundary 8h is called the "universal high frequency" (UHF) boundary.

2.4.6 Th- optimum L(jw)

It has been shown [10,11] that a realistic definition of optimum in

the iti system is the minimization of k, defined by limL(s) = ks-e ,

S -+O

where e is the excess of poles over zeros assigned to L(s)

It has been proven [10,11] that the optimum L lies on its boundary

B. at each wi and that such an optimum exists and is unique. Most

important for the present purpose, is that in significant plant ignorance

problems the ideal optimal L has the properties shown in Figure 2-7, i.e.,

over a significant range it follows Bh along UV up to the point J at

which it abruptly jumps to infinity along WW'W" and returns on the vertical

line YZ, whose phase is (-900) e . Such an ideal L(jw) is, of course,

impractical. A practical suboptimum L is shown in Figure 2-7.

Some results of a numerical design example are shown in Figure 2-8.

They were derived for the following problem.

.
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K

Plant uncertainty: Pl 1 2 2 P -3<W < 5
S +2 w S + w

2 < w nV-e< 10 ,4 < K 1250

PM A - I < A < 3, 10 < K <3.2i S+A' - -- j 3.

BK'
Pi = + 10 < B < 20 , 100 < Kj.< 158

Performance Specification: Shown in Figure 2-Ib, were originally derived

from time domain bounds [9].

LDisturbance response: Y < 3.0 db
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d03o2

Figure 2-8. Single loop La and outer loop L

of the numerical example in Section 2.4.7.
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This example is used in Section 2.6 in a demonstration of the advantages of

multiple-loop design.

2.5 Cost of Feedback and Effect of Sensor Noise

In significant plant ignorance problems, there is a strong tendency

for the design to be such that N , in Figure 2-2a, is so highly amplified

as to saturate the plant input at X . The noise response function is (see

Figure 2-2a)

TX tX -u -L/P
N N ' l _+GP l+L

-L/P in h.f. range where ILI << 1 (2.13)

N represents the square root of the noise power spectrum. The noise response

of the numerical design example of the last section is shown in Figure 2-9.

Notice that the noise component at x , in Figure 2-2a, is most important

in the high-frequency range where the useful command and disturbance components,

due to R and C are relatively small, rather than in the low frequen4 1

range where the latter are relatively large. Hence, it is desirable to

decrease ILI vs. w, as fast as possible in the high frequenc-y range.

Ever, a saving which is small in the logarithmic scae car be significant

in rms sensor noise effect. Reduction in, this 'cost of feedback' is the

primary motivation for turning tc multiple-loop desgr..

.
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Figure 2-c. Enormous sensor noise amplification in
the sangie-loop design for Section 2.4.7 example.

2o... Reduction in Cost of Feedback by means of linear time-varying

compensation and nonlinear compensation.

To reduce the hf sensor noise effect, one way is by linear time-

varying compensation if the problem has time-varying features [12]. Another

is by nonlinear compensation. Actually the so-called "adaptive" system is

in the category of nonlinear compensation. They may or may not be better

than Iti compensation in reducing the 'cost of feedback'
.  It is noteworthy

and scandalous that in the vast literature on adaptive systems, there is

hardly ever any quantitative comparison between the adaptive design promoted

and a proper Iti design accomplishing the same design objectives. One could

excuse this not being done in a general manner, because there is hardly any

1 'adaptive' method permitting quantitative design in the sense here defined.

-26-



However, it could at least be done experimentally. Occasionally one sees a

comparison, with an 'ordinary' or so-called 'classical' design. But the

comparison is usually greatly biased, because generally some very naive Iti

design is used, and there is no statement of specifications--even made up

after the fact. There is not recalled a single comparison, on the part of

the proponents of adaptive systems, with the Iti quantitative design tech-

nique [7] discussed here. Some nonlinear compensation techniques for which

a quantitative design theory exists to a greater or lesser extent have

appeared in the literature [13-17] for which such comparisons are possible.

It is noteworthy that these were expressly motivated by the desire to reduce

the 'cost of feedback', so that such comparisons were a natural by-product.

2.6 Multiple-loop feedback.

Another method of 'cost of feedback' reduction, in the context of Iti

design, is by means of multiple-loop feedback, restricted to those cases

where an additional plant variable (besides the plant output) are available

for feedback purposes. Such a multiple loop design technique was first

developed [18] for the cascaded structure of Figure 2-lOa.

The design example of Section 2.4.7 was done by means of a two-loop

design (n = 2 in Fig.2-10). The resulting new outer loop (L1 o) is shown

in Figures 2-8, 2-11 and is considerably more economical in bandwidth than

the single-loop design (Lso) for the same problem. The effects of the outer

sensor noise N I at the plant input are compared in Fig. 2-12. Note the

tremendous improvement. However, there is now a second sensor with noise

source N2  in Fig. 2-lOb. Its effect is shown in Fig. 2-12. It can be
I2

reduced by using 3 loops (n = 3 in Fig. 2-10). Compare X/N2  for 2 and

3 loop designs in Fig. 2-12. But now there is N3 to consider and X/N3

,4 -is shown in Fig. 2-12.

1'.. -27-



X;L qa C-

C4C

Figure 2-10a. The general cascaded feedback structure.

(Constrained plant and sensors in heavy lines.)

F, PP

Figure 2-l0b. Sec. 2.4.7 2-loop design. L 10 = G la P10 P2eqa

P 2eqa L L2a/(] + L2 ) L L2a = G 2aP20 *

F C

Figure 2-10c. Sec. 2.4.7 3-loop design. L 10 - Glb P 0P 2eqb

P2eqb = L 2b/(l +L 2b) 2, -b G 2%QP203eqb

P 3eqb = L 3 b/(I + L 3b) ,L 3b = G 3bp~o
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2.6.1. Design perspective

The above results are very impressive. But what is even more impressive

is that a very good approximation to the final multiple-loop designs and the

sensor noise effects, can be gotten very quickly by means of a technique

called "Design Perspective" (19,20]. The application of Design Perspective

to the above example is shown in Fig. 2-11. A detailed design was required

only for the single-loop Lso . The dashed lines show the results using

Design Perspective for L10 -outer loop in 2 or 3-loop design, L2 a-first

inner loop in a 2-loop design, L2 b - first inner loop in a 3-loop design,

L3 b- second inner loop in a 3-loop design. Note the excellent agreement

between the approximate Design Perspective results and the final detailed

designs. Design Perspective enables the designer to obtain a good under-

standing and perspective of the important design trade-offs quite early in

the game, without the need of a detailed design.

2.7 More Complex Multiple-Loop Structures Including Plant Modification

Systematic quantitative design techniques have also been developed

[19,20] for the more complex multiple-loop structures of Figures 2-13a,b

denoted as the Triangular and Parallel-Cascade structures respectively.

The results shown in Figures 2-1c,d were obtained for a design example based

on Figure 2-13b with two parallel sections (m = 2) nI = 3 , n2 = I and

Pli = k li/s for i = 1,2,3, P2 1 = k2 /s 3 and very large uncertainties

kl 1 [50,500] , k12 E [20,800] , k13 c [1,60] , k2 c [oo,200,000].

The parameter values in the brackets in Fig. 2-1c have been normalized and

are given in the order k12 , klH , k13 , k2 . Design Perspective has also

been developed for these structures [19,20].
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Plant Modification

It is noted that in Figures 2-10, 13a,b, each feedback loop is returned

to the plant input X . No feedback is allowed to any internal plant

variables e.g. From C to C2 or more generally From any Ci to Cj

j > i and j = 2,3,...,n- I . The reason is that any such internal Feedback

constitutes "plant modification". The plant has been assembled by its

specialists to deliver some maximum output C and the permissible levels of

C2 = C/PI C3 = C/PIP 2 ""...Ci = C/PI - Pi-I are thereby determined.

Suppose there is Feedback from C vis H I to C2 , as shown in the insert

in Figure 2-10a. Now X L 1( +P H1 ) with signal level possibly much

greater than the previous C/P , which the plant may perhaps not be able

to handle.

We thus assume that the "feedback specialist" is called in to design

the feedback network around the plant, after the latter has been built by

the "plant specialist". This is the situation very often in practice. If

the feedback specialist does his job properly, i.e. achieves the system

response function T(s) within its tolerances V P c P , then the signal

levels inside the plant will be within the values allowed by the plant

specialist, so long as the command input functions r(t) are in the set for

which the system was designed.

Recently, quantitative design has been extended for the first time

[21-21, specifically to the single branch cascade plant, with plant modifica-

tion allowed. Some of the resulting structures are shown in Figure 2-14'.

The degree of modification, in a rms sense, of the internal plant variables

|= was added as one more design specification, in addition to those listed here.

It was shown that the loop bandwidths can thereby be significantly decreased,

-33-
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beyond that possible in "no plant modification" designs. This indicates

that in significant plant uncertainty problems, it is definitely advantageous

to have the "feedback specialist" participate with the "plant specialist"

in the design of the plant.

2.8 Summary

Some of the principal features of single input-output linear time

invariant (Iti) quantitative synthesis theory for highly uncertain plants,

have been presented briefly in this chapter. It should be clear that a

respectable, mature synthesis theory exists for this class, although much

remains to be done. Numerous quantitative design examples have been executed

together with computer simulations, which have corroborated the design

techniques. The existence of these design examples serve as benchmarks

against which any "adaptive" design with claims of superiority can be checked.

These design techniques can, of course, be applied to the Iti flight control

problem. But what is of much greater importance is the startling fact that

most of these techniques are applicable exactly (no approximations) to linear

time-varying, nonlinear and even nonlinear time-varying highly uncertain

plant problems. This is treated in the next chapter.

.
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CHAPTER 3

A BREAKTHROUGH IN QUANTITATIVE FEEDBACK SYNTHESIS

3.1 I ntroduction

Quantitative feedback synthesis in the frequency domain has clearly

shown its value in the single input-output multiple-loop design techniques

for lti systems, which were briefly outlined in Chapter 2. However, a

fantastic, hitherto considered impossible achievement has recently been

made [3-5]. It has been rigorously proven that these techniques can be

applied exactly to a large class of nonlinear, highly uncertain plants, even

nonlinear time-varying plants. The interesting point is that factors like

uncertainty, synthesis, quantitative design to specifications are generally

considered to make the design problem much more difficult. But it was pre-

cisely the precision and discipline involved in such strict requirements,

which led to the development of the rigorous nonlinear synthesis technique.

This claim of precise design of nonlinear, uncertain systems seems so

unbelievable that it is worth repeating that there are no approximations

involved, no linearizations, no describing function type of approximations,

etc.

3.2 Concept of the Linear Time Invariant Equivalent Set (LTIE)

The simple single-loop structure of Figure 3-la is first treated, for

the case of a single system command input r (t) . The nonlinear plant w,

with y(t) = w(x(t)) , has uncertain parameters, e.g. w is given by

+ Ay3y + Bymsgny = Ex (3.1)

with A, E, m, E uncertain in that it is only known that A c [-1,3],

-36-

= .. -



*01 Y'J

Figure 3-la. Single loop feedback system with nonlinear uncertain plant w e W.

Figure 3-lb. Tolerances on response to 2-unit step command.

B c [2,8] , E e [1,2) , m E [.3,1.21 . Each combination of possible values

of A,... ,m give a different w , thus generating a set W = {w} of

nonlinear plant functions. It is required that in response to command input

rI(t) , the system output y(t) should be a member of a specified acceptable

set A . For example, if rI(t) is a step function of 2 units magnitude,

the tolerances on the output and its derivative may be as shown in Fig. 3-lb.

Any y(t) which satisfies these tolerances is a member of the acceptable

set A -{a(t))

The next step is to find a linear time-invariant plant set P , which

is precisely equivalent to the nonlinear plant set W , for the purpose of

the synthesis problem. To do this, take any a i c A and any plant wi C (W

Find the input to w which gives the output ai , i.e. solve Eq. (3.1) for
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x given y, which in this case is a relatively easy operation. Denote the

resulting x by x. Now find a linear time-invariant plant P ,which

is equivalent to wJ for this special case i.e. the output of P1 is a.(t)

when its input is x (t) An easy way to do this is to letI

P(s) =(3.2)
P (t)

This implies that both aW(t) and xj(t) have Laplace transforms, a condition! i

that is difficult to violate.

The lti P-(s) is precisely equivalent to the nonlinear wJ  (from the

input-output viewpoint), only when the input is x (or the output is y = a.).

Thus, imagine each is put inside separate, externally identical black boxes.

The only measurement you are allowed is to inject an input signal xw(t)

It will be impossible to say which black box contains the nonlinear wJ

and which one the linear Pi

Repeat this operation over all the w F W , for the same a. Then

repeat it for all the a E A , generating a set of {PJ} P . For example,

if the set A had 10 elements and W had 20, then the set P would have

200 members. In practice both A and W are uncountable sets and so is P

The set P is equivalent to W only with respect to the set A . Thus,

n n
for any pair a E A, w n W , there exists a e P which is equivalent

m

to wn in the sense that some signal xn(t) must be applied to wn to

Implicit in this is the assumption that the plant has a unique inverse,
excluding for example hard saturation. In practice, in such cases, one can
model the hard saturation by a very small gain. Actually, the theory can be
expanded to the case where there is no unique inverse but there is a set of

possible inputs giving the same output, providing this set satisfies certain
reasonable conditions.
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give am and If this same sjgnai is applied to Pn Its output Is also

a -P Is the linear time-invariant equivalent (LTIE) at W , withm

respect to A.

In Fig. 3-la, suppose w (which can be any member of the nonlinear

set W ) is replaced by P(s) , any member at all of P . Consider the

problem of choosing F, G so as to guarantee that the system output lies

in the OK set A, no matter which P E P happens to be the plant. This is

purely a quantitative Iti design problem for which the techniques of Chapter 2

may be applicable. Suppose they are, which means that F, G are found such

that the output is in A , no matter which P c P is chosen. Then, under

very general conditions this same F, G compensation pair works for the

nonlinear set W . This means that no matter which nonlinear plant w e W

is used, the output is guaranteed to be in the OK set A . Functional

analysis techniques are used [3,4] to prove the above, but the design execu-

tion involves simple, direct frequency response techniques, which can be

performed by any reasonably competent feedback design engineer. A brief

outline of the procedure is next presented.

3.3 Outline of Synthesis Procedure for Nonlinear Uncertain Plants

3.3.1 Problem Statement

To simplify the presentation, take an example where the nonlinear plant

is given by the first order equation

+ Ay 2 = Bx; A c [-1,5] B E [1,10] (3.3)

Thus, the nonlinear plant is clearly "unstable" for a subset of plant parameter

values. Suppose the typical command inputs are steps from k I - 1 to 5

magnitude, and other inputs of the form k 2te -twith k 2 e [1,4],



a s [.2,3] . It is desired that the closed-loop system behave like a Iti

system with transfer function

T(s) 2 +KsE E, E [16,20] , K E [9,11] (3.4)

3.3.2 Design Procedure

Take any command input r(t) in the set (kIu(t) , k2 te
(
Lt } and any

acceptable T(s) . Their transform product is R(s)T(s) whose inverse

transform gives a possible output y(t) . For example, if R(s) = 2/s , then

y(t) = L R(s)T(s) _ 2 + 2[ae-bt-(-be-at)]= 2+ p1(t)b -a (3.5)

a+b = K, ab = E

Substitute y(t) into Eq. (3.3) aid solve for

Bt) ae-at- e-bt 2

Bx(t) ab(e -e ) + A[4+ 4p +(t)+)p (t]. (3.6)b-a

!1 X(S)

Next find P(s) = . Actually, it is easier to find p()= y() with

Y(s) = 2E/s(s 2 +Fs+E)

BX(s) ab IA 4(s+a+b) s 2 + 3s(a+b) +2(a2+3ab+b2) (
(s+a) (s+b) LS -" s+ (s+2a) (s+2b)(s+a+b) (3.7)

The above gives a set {P(s)}, by letting a, b, A, B, kI , etc.

range over their permissible values. The process is repeated by taking

r(t) = k2 te-C't, giving in the same manner another set of P(s) . The union

of the two sets gives the total P set. Thereafter, the design procedure

is entirely the same as for an uncertain linear time-invariant P set-- as

briefly described in Section 2.4 and in much more detail in [7]. The
I.

objective is zo find F(s) , G(s) in Fig. 3-1a, such that the system transfer

function satisfies the frequency-domain tolerances given by (3.4), for all
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P(s) e P This is completely a linear time invariant design problem. If

it Is solvable, then the same F(s) , G(s) are guaranteed to work for the

original uncertain nonlinear plant problem. In this case It is certainly

solvable.

3.3.3 A Condition for Guaranteed Solvability of the Linear Time !nvariant

Equivalent (LTIE) Problem

If the LTIE set P = (P(s)} is minimum-phase then the LTIE problem is

solvable. Now P(s) = Y(s)/X(s) with x(t) = w- I [y(t)] in the notation

of Section 3.1. Zeros of P(s) are the zeros of Y(s) (those uncancelled

by X(s) ) and poles (uncancelled) of X(s) If the command input is

minimum-phase, then the OK output set A can be prescribed minimum-phase,

so Y(s) has no right half-plane zeros. The condition then is that X(s)

has no right half-plane poles, i.e. the plant input is "stable."

Consider a nonlinear plant described by a differential equation of the

form Ny = N2x with N,, N2 nonlinear differential operators. it Is

assumed Y(t) is "'stable" and so is Nly . For example all Nly of the

form Ef i (y) dty with f.(y) bounded will give "stable" Nly . So thedt'

problem-is the stability of x in N2x = i(t) with p(t) = Niy known and

"stable". For example, if N2x = ; - x (linear in this case), then the

plant is nonminimum-phase, as it would be even if NIy was linear time-

invariant. The above gives a relatively simple means for determining whether

the LTIE plant set is minimum-phase, a concept which is now also meaningful

in nonlinear feedback design.

-41-
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A.3.4 System Response to Other Inputs

It is important to emphasize that the desired performance can be

guaranteed only for those system inputs which were explicitly listed and

considered in the design. Thus, in the example of this section, what can

be said of an input r(t) = 5t ? Apriori not very much, because it was not

in the list for which the ELTI plant set was found. We could however, check

if the closed-loop system will behave like a T(s) satisfying (3.4) to

such an input, as follows.

Let Y(s) = R(s)T(s) , with R(s) = 5/s2  in this case and T(s) of

(3.4). Solve (3.3) for x(t) and find P(s) = Y(s)/X(s) . If P(s) E P

the set previously obtained, then indeed the system behaves like T(s) to

this input too. However, if ramps of a certain size are indeed typical

inputs, then it would be a good idea to include them at the outset in the set

of r(t) , for which the design is explicitly made. In any significant

problem (such as the flight control one described in Chapter 4), one must

prepare a cOmputer program for solving the nonlinear plant equation backwards

for the input x(t) , given the output y(t) . A computer program is also

prepared for finding Y(s) = T(s)R(s) It is then a simple matter to err

on the safe side and let the set {r(t)} include all conceivable realistic

inputs.

In the preceding, only system command inputs r(t) in Figure 3-la were

considered. But disturbance inputs d1 and/or d2  in Figure 3-la are

similarly treated. One must assign acceptable output sets in response to

the disturbances, in the same manner as the set {r(t)} . This gives a set

j. of acceptable outputs {yd(t)} , due to the disturbances. The corresponding

plant inputs and LTIE plant set are found in the same manner. An example
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in which both command and distrubance inputs were thus considered is given

in [12]. Incidentally, it has been shown (4] that the design Is not sensitive

to the inputs, i.e., significant deviations from the r(t) for which the

design was made, will have small effect on the T(s) presented by the

system. The design can be executed such that noninfinitesimal changes in

each r(t) give a T(s) within the acceptable set. This has been verified

in all our design examples.

3.4 Extensions of the Nonlinear Design Technique.

There are quite a few significant extensions, briefly noted here. One

is to nonlinear closed-loop synthesis, i.e. the closed-loop system can be

designed to be nonlinear and quantitatively so. For example, it may be

desirable to have the plant operate close to its saturated value nearly all

the time, in order to have fastest possible response, say to step functions.

The OK response sets may then be as shown in Fic. 3-2. Note that in a linear

I4.0

Figur 3-2.,cpabeotptst of a,," nonlnea syte naue 'o
rsos s 2

2 04 12 / 4 3-

Fi~~~lure, YU2 Ac e tb e o tp t s t f a no l n a y t m a u e o
3,4 10 1

Fiur 3-2 Acesptabes otpu stes of a noliea sytmntue.o
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system the OK response set for a step input of magnitude 2 must be twice

that for a step input of 1. This is not so in Fig. 3-2. For any step input

in a specified range, the output is required to climb at the same (saturated)

rate until it is close to the final commanded value. F in Figure 3-1 then

emerges nonlinear. A design example of this kind is described in detail in

(121. Another such nonlinear closed-loop design philosophy may be applicable

to flight control. In a fast maneuvering situation, the command inputs

are fast and large, and it is desired to command acceleration while in a

tracking mode, the command inputs are slow, and it is desired to command

pitch. One could pose typical inputs of the first kind and define the

desired acceptable set and repeat for inputs of the second kind. The design

technique can handle this kind of situation-- even with the plant nonlinear

and uncertain, of course.

The plant can be linear or nonlinear time-varying and uncertain, e.g.

+ A+Be-~ a . + QY (H+je-t Kk+ Me- sinvt.3  (3.8)

with say uncertainties E c [1,5] , G E [2,41 , act (1,2] , etc. The closed-

loop system, can be designed to be l inear time invariant, l inear time-varying,

nonlinear time invariant or nonlinear time-varying. If linear time-varying

then F, G in Figure 3-1 emerge linear time-varying. If nonlinear time-

varying, F is nonlinear time-varying, G linear tine-varying. One example

of a highly uncertain nonlinear, tine-varying plant but with linear time

invariant closed loop specifications, is given in [4]. Another example with

a linear time-varying uncertain plant and Iti closed-loop specifications is

given in [3].

Another extension is to single input-output multiple-loop systems of

the kind described in Chapter 2, but excluding the plant modification structure.
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Consider Figure 2-10, with nonlinear w1 ,w2,.. replacing P,P 2 .

If c(t) is known (a member of the OK set), one can solve the nonlinear

equations backwards to find c2 (t) , c3 (t) , etc. Then C(s)/C 2 (s) = P1
the Iti equivalent of w, C2(s)/C3 (S) P2  the equivalent of w2 etc.

A set of each is generated and the result is a multiple-loop Iti problem

solvable by the methods of [19). The resulting Iti design works for the

nonlinear uncertain plant set.

Another extension being currently researched is for the case of non-

minimum-phase system inputs. Nonminimum-phase OK output sets must then be postu-

lated, leading to Iti plant equivalents which may have both zeros and poles

in the right half-plane. It appears that in the resulting Iti design, there

can be zeros of I +L(s) in the right half-plane, where L(s) is the Iti

equivalent loop transmission. In a real Iti system this would give an

unstable system, but it need not be so in a Iti equivalent system. This

research has not as yet been completed.

3.5 Comparison with Other Synthesis Techniques

There are no other techniques which cope directly with the quantitative

synthesis problem described here, i.e. which guarantee outputs in the time

or frequency domain, for apriori given uncertainty ranges of plant parameters,

even for linear time invariant plants. Optimal control theory is mostly

concerned with perfectly known plants. If parameter uncertainty is considered,

it is usually done in a qualitative manner. And system performance is always

formulated by a scalar functional--a single real number which is usually

a quadratic function of the state and control variables. In most control

problems, one is vitally interested in transient response, which is a function

of time, not a scalar Functional. Often systems which are optimal for the
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quadratically based functional, have very poor (large overshoot) in their

time response.

In the last decade, modern control theory has concentrated on state-

variable feedback, use of observers, etc. for realizing desired system

eigenvalues. Again, plant uncertainty has until recently, been completely

neglected. Lately there has been a great deal of work on "robustness",

mainly with the problem of stability for small enough parameter variations,

or for disastrous failures of' some components. This is a very welcome

improvement in the realism (,f modern control theory. However, it has very

far to go as yet. The role of loop bandwidth, or its time-domain equivalent

of speed of loop response, is still not appreciated. The system performance

is still judged by a scalar functional. This laudable attempt at realism

in control of uncertain systems, is being handicapped by the mathematical

formulations and techniques used. These were natural and sensible in

optimal control of perfectly known plants, which is basically an open-loop

problem. They are unnatural and opaque for quantitative synthesis of highly

uncertain systems.

At the present time, any other synthesis technique applied to the

quantitative problem formulated here, must proceed by cut and try. It Is

not even possible for any of them to declare apriori whether a specific

quantitative performance specification set can be satisfied or not, even for

Iti problems. It is possible to do so with the techniques presented here,

even for nonlinear time-varying problems. The next chapter presents a

detailed application of the nonlinear technique to the longitudinal flight

control problem, based on a simplified but highly nonlinear plant model.

.
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CHAPTER 4

FLIGHT CONTROL DESIGN BASED ON

NONLINEAR MODEL WITH UNCERTAIN PARAMETERS

4.1 Statement of Problem

In this chapter, the breakthrough of Chapter 3 is applied to a signi-

ficantly nonlinear model of the short-period longitudinal flight control

problem.

Nonlinear plant model (see Table of Symbols)

PVoS (a) + C (4.1)
u qV 0  + g Cos 6 - 2"-- [Na( + N6(a )6](4 1

PVS [C W6 + C. (.) + _L C (a)q]
eq=21 tC(ac +6 CMa) 2V 0 mq

a = tan- "I u (4.2, 3)

The control input is the elevator angle 6, and the output variable to

be controlled is [24],

c =1 2.4 8 + (*v- V + 66) (4.4)

The feedback structure used is shown in Fig. 4-1 with c - w(6)

The numbers used in Equations (4.1-4) are [25,26] I = 207,000 kgm 2

2m = 17,000kg, C = 4.89 meters, S - 49.2 m . The Cij(a) are nonlinear

functions of a, see Fig. 2-2. Since a (Fig. 4-8) ranges in [0,350],

there is strong nonlinear operation. The horizontal velocity v was taken

as V0 fixed, which is incorrect for some low-velocity cases, but the

I. objective here is to demonstrate the validity of the design technique in a

strongly nonlinear situation, which is achieved sufficiently by means of

the nonlinear C i(a)

.' ,
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The bounds on the acceptable c (t) in response to a unit step

command are included in Fig. 4-7, which also include design simulation

results. The set of command inputs R consists of steps 1 to 5 in

magnitude. Parameter uncertainty is due to p ranging in [.3, 1.22]

and V0  in [75,206]. Initial conditions are i(O) = qO(0) - q(O) = 0,

a(0) = 6(0) , giving initial values for 6 (as well as u , 0 , a) which

is subtracted out so that the change in 6 is used to find the Iti

equivalent P set. The detailed steps in the design implementation are

next presented, with comments postposed to the end.

4.2 Design Execution

4.2.1 The linear time invariant (Iti) _equivalent set P

Let c c(t) AC"(s) = T(s)R(s) , where T(s) is the equivalent

system transfer function presented by the closed-loop system of Fig. 4-1.

Here R(s) = k/s with k e [1,5] , while it is required that T(s) c T,

a set derived from the bounds in Fig. 4-7. A simple means for generating

2 2 2
T, taken from [25], is to let 7(s) = a (s+2.9)/2.9(s +2Cas+a ,,

ranging in [3.7, 1.5], a in [3.14 ,7.6] , giving the bounds or. IT(jw)l

in Fig. 4-3. Such bounds suffice [7] for mp (and obviously stable)

T(s) . An 1(s) , F(s) pair thus generates an acceptable c"(t) . A

computer program solved Eqs. (4.1-4) backwards for 6(t) and then checked

the result by scIving Eqs. (4.1-4) forwards for c t) from 6(t) . The

program was considere4 adequate only when excellent agreement was obtained

over the entire range considered. C (s) was a priori available and

A(jw) a L6(t)].j was obtained by numerical integration. As c is a

L short-per;od criterion and for all the acceptable cases has definitely

reached steady-state in 4 seconds (see Figs. 4-7), Eqs. (4.1-4) were sclved

only for t E [G,4 seconds] , and the constant 6(4) was used for t > 4

-49-



.Ol

00/r - " O

oo 4

00

-50-

"\.



'% I

Loci of six P(jw) are shown in Fig. 4-4, two of them (e,f) unstable

with a pair of right half-plane poles, which are zeros of A(s) . The set

includes a large number of such unstable Iti P(s) , which the design

technique can easily handle.

Plant templates. At any w say w = wi . the set {P(jw)}, P e P

consists of a region in the logarithmic complex plant (Nichols chart)

denoted as the wl-plant template Tp(w,) . A number of Tp(w) are shown

in Figs. 4-5a to f. At very small w there are two almost constant angle

sub-templates 3600 apart. This is due to the presence of both stable and

unstable P e P, and the fact that Arg P near w = 0 is either 2 0

or n7r/2 for some integer n . As w increases, the two groups merge

together and approach a single vertical line at large w well beyond the

plant "dynamics" (w = 12 is large enough in this case, see Fig. 4-5f).

Note how this frequency response approach is indifferent to system order.

4.2.2 Design of G(s) , F(s)

Given the set P = {P} , the problem is to find F(s) ,G(s) in

Fig. 4-1 such that the system transfer function T(jw) - FGP/(l +GP) e T,

for all P c P . One may program the computer to find the (unique) bounds

B(w) on G(jw) , so that as P ranges over P, A InIT(jw)I -
AnI GP

A In GP I-< [A2() - A ()] db of Fig. 4-3. Alternatively, this may

be done by hand, giving useful insight as explained in Section 2.4.3,

Figure 2-4.

Fig. 4-6 shows the bounds so obtained on G(jw) , and the G(jw)

chosen to satisfy these bounds. Let eG be the excess of poles over zeros

assigned to G(s) , so that as s -* , G - kG/s It is reasonable to

define the optimum G as that which satisfies its bounds with minimum kG
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It has been shown [11] that G0ot lies on 8(w) at all w and that Gopt

exists and is unique. The design of a practical G(s) to satisfy the

bounds is somewhat of an art [7]. For a given skill in the art, the greater

the number of poles and zeros of G , the closer one can get to the optimum,

so there is trade-off between complexity and bandwidth. Here, we chose

simply by cut and try G(s) = (1+.2s)/s(l+ .033s 2)(l+ .002s+104 s 2)

with very modest bandwidth, Figs. 4-3, 6. A much simpler G(s) could have

been chosen with larger bandwidth. The designer must make his own trade-

off. Ref. 7 offers some advice on the shaping of a function to satisfy

a set {B(w)) in the Nichols chart.

Design of F(s). G(s) only guarantees that AIT(jw,)j < A(w)-A 1 (w) of

Fig. 4-3, e.g., at w = 10, the actual change in IL(jlO)/(I+L(jIO))j is

from -7 db to 4 db, while from Fig. 4-3, the permitted change in

lT(jI0)j = IFL/(l + L) j is from -15 to 2.8 db . Hence, any value of

IF(jiO)1 c [-8, -1.2 db] is acceptable. In this way, upper and lower

bounds on IF(jw)l are obtained and F(s) is chosen to satisfy them,

which is also somewhat of an art. In this example, a satisfactory

F(s) = ( + .33s) ( + .05s)/(l + .25s) ( + .2s) (I + .0125s) 2 , see Fig. 4-3.

4.2.3 Design Simulation

The nonlinear system was simulated and its response found for several

hundred command inputs and gust disturbances. Typical (68) responses

to c step commands are shown in Fig. 4-7 a to h for various combinations

of Vo, p and step (k) values. The transient response of a(t) , 9(t)

etc., depend, of course, on the values of k, p, V0 . Two sets of these

are shown in Figs. 4-8 a, b, with Fig. 8a depicting very large a(t)

excursion, for which the C ij(a) in Fig. 4-2 are in strongly nonlinear
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9: Kz 1 0 VO=200.O RIJ=0.859
8: K=1.0 VO=200.0 Rfi=O.721
7: K=1.0 VtJ=200.0 hO0.605
6: K=1.0 VO=200.0 RO=0.508
5: K=1.0 VQ=200.0 80=0.426
4: K=1.0 VO=200.O 80=0.358
3: K-1.0 V0=200.0 RIJ=0.300
2: K=1.0 VO=176.9 AO=1.220
1: K=1.0 VO=176.9 RiJ=1.024

9: K=2.0 VO=108.3 80=1.024

8: K=2.0 VO=108.3 1:0.859

7: K=2.0 VO-108.3 R1:0.721
6: K*2.0 VO=95.8 1=1.220
5: K*2.0 VO=9S.8 RO-l.024
4: K-2.0 VO=9S.8 RO-0.659
3.1 K-2.0 VO'8.8 11.220
2% k-1.0 VO-200.O 1=1.220
1: K=IaO VO=200.. FR0I.02A

Figures 4-7 a, b. Simulation results. Response to step

command of c ,magnitude K.
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9: K=2.0 VO=156.5 RO=0.721
r 3 8: K=2.0 VO=156.5 RO=0.605

7dK20V=565R=.0

: K=2.0 VO=156.5 RO=0.426

5: K=2.0 VO=156.5 RO=0.358

4: K=2.0 VO=1.38.4 AO=1.220

3: K=2.0 VO=138.4 RO=1.024
2: K=2.0 VO=138.4 RD=0.859
1: K=2.0 VO=138.4 RO=0.721

1Q 2 3 .3 5 6 IVIJ~ 7 8 9e h

9: K=3.0 VO= 122.5 10= 1 .024
8: K=3.0 VO=122.5 190=0.859
7: K=3.0 VO=122.5 190=0.721
6: K=3.0 VO=108.3 190=1.220

5: K=3.0 VO=108.3 190=1.024

4: K=3.0 VO=95.8 190=1.220

3: K=2.0 VO=200.0 RD=1.220
2: K=2.0 VO=200.O 190=1.024
1: K=2.0 V0=200.0 190=0.659

za - -*. 4ah ahh .

I.Figures 4-7 c, d. Simulation results. Response to step

command of c ,magnitude K.
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9: K=3.O VO= 176.9 80=0.859
8: K=3.O VO=176.9 AS=O.721

7: K=3.0 V0=176.9 RD=O.605

6: K=3.0  VO=176.9 RD=O.508
5: K=3.0 VO=176.9 R=0.426

4: K=3.O VO=176.9 80=0.358

3: K=3.O VO=156.5 RO=1.220

2: K=3.0 VO=156.5 R0=1.024

1: K=3.0 VO=156.5 RO=0.859

~ 23456759

9: K=4.O VO=,36.4 90=1.220

8: K=4.0 VO=138.4 RO=1.024

7: K=4.0 VO=138.4 RO=0.859

6: K=4.0 VO=138.4 Rt=0.721

4: K=4.0 V0=122.5 R0:1.024

3: K=4.0 VO=108.3 RD=1.220

2: K=5.O VO=20O.O RO=1.220

1: K=5.0 VO=200.O R0=1.024

w.

Figures 4-7 e, f. Simulation results. Response to step

command of c magnitude K.
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1 23 45 67 89 9: K=5.0 VO=156.5 R0=1.220

8: K=5.0 VO=156.5 80=1.024

* 7: K=5.0 VO=156.5 R0=0.859

6: K=5.0 VO=156.5 190=0.721

5: K5 00 V0=136.4 0=17220

4: K=5.0 V0=13804 R0=1.024

3: K=5.0 VO=122.5 R0=1.220

2: K=3.0 VO=200.0 R0=1.220

1: K=3.0 VO=200.0 80=1.024

,~~~~~~~~~i Na taa.2Ec ,.,a O I U C- )

q 1 2 3 4 5

5: K=1.0 VO=95.8 80=0.722

2: k-[,0 VO-64..8 90-0.859

'1I k-1=,0 VO-7S,0 P.0=i,220

Figures 4e-7 g, h. Simulation results. Response to step

command of c ,magn itude K .
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Figure 4-8 a. Responses Of Ct(t) , 6,C
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Fi-gure 4-8_b. Responses of adt) ,e,6 c*
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ranges, These are the inputs for which the system was designed, and for

which guarantees can be made. Out of the several hundred cases simulated

in a very few cases (Fig. 4-7 h), there was very slight excursion out of

the bounds. It is possible to include in the design other inputs and gust

disturbances, with specified response tolerances - and then guarantees

can be made for these as well. The response to other inputs is nevertheless

found here to be also quite satisfactory. This is typical of the design,

i.e., the system is not very sharply tuned to the class of inputs used in

the design execution. There is reasonable response continuity to other

inputs.

Some responses to very large c step commands causing hard

saturation are shown in Fig. 4-9 a, b. Response to Gust Disturbances.

The gust input was model led by replacing a in (4.3) by a - tan- I +
To-

Two kinds of ca were used. In one a is a half-sine wave ofgust gust

amplitude 20/V 0  radians and half-period THALF c [.2,2]sec . Some

results are shown in Figs. 4-10 a to c. In (a) the gust begins precisely

at the instant of application of simultaneous c step commands. The

second kind in Fig. 4-11 a-d, is stochastic guassian with power spectrum

k/(l +w 2)V2  and (as) = 6/V radians. Examples of responses to a
0 gust rms 0

single square wave c command with equal positive and negative values k

and total duration 2 THALF are shown in Fig. 4-12 a to c.

6.
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K=8.0 VO-200. RD=0.30

MTrE (IN. SC5E).

Figure 4-9 b. Responses for input causing hard 6 saturation.
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Figure 4-10 a. Responses to gust and simultaneous C step coimmand.
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RESULTS OF SIMULATION

2 3 4 5 WITH NOISE
THRLF=0.20

I

5 K=0.0 V0=75.0 80=1.220

4: K=0.0 VO=10.0 RO=.000

3: K=0.0 VO=150.0 RO=0.300

2: K=0.0 VO=1O.0 R0=1.220

1. K=0.0 VO=200.0 A0=0.300

Figure 4-10 b. Responses to gust.

RESULTS OF SIMULATION

1 2 3 4 5 WITH NOISE
THRLF=2.O0

: (=0.0 VO=75.0 RO=1.220

3: K=0.0 V0=150.0 RO=0.300

2: K=0.0 VO=100.0 0-=1220

1: K=0.0 VO=200.0 RD=0.300

Figure 4-10 c. Responses to gust.
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RESULTS OF SIMULATION RESULTS OF SIMULATION
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4.3 Discussion

A second-order model was used for T(s) with excess of poles over

zeros •T - I , in Step 1. This appears to be incompatible with G, F

fifth order and excesses eG M 4, eF - 2 , and P (no analytical expression

but linearized (4.1-4) give second-order P) with e- 0 . Strict design

execution appears to require a T(s) of complexity compatible with

T = F GP/(]+GP) . Note, however, that in Step i, the model of T(s) is

used only to generate a set which covers the range of a priori specified

acceptable outputs. Any T(s) model which achieves this is clearly

satisfactory, and the simpler the better. The designer can later choose

the complexity of G(s) , F(s) , with no regard for that of the T(s)

model used in Step 1.

The class of applicable nonlinearities has been defined implicitly in

Ref. 4, but one very large class can be defined explicitly. Let

Dly(t) = D2x(t) with Dl , D2 operators which may be nonlinear, uncertain

and time-varying, e.g.

D y = M(Y)(y)'5sgn Y + A+Bte- t '21yIn + Hy2

Ig y E+Ft

E c [1,5, F c [.5,41, A E L-3,61 , a e [.5, 1.51

B E [-3,2] , H E [-4,1] , n E [.5,2], M E [1,5]

The range of M must be of the same sign. All OK y and D1y must be

bounded for a!l t in [O,o] and DIy must exist. Hence y must be

twice differentiable except, at most, at a countable number of points.

Then D~y = p(t) is known and there must exist a unique solution for x

in D2x = 4'(t) . The solution must be bounded for all t E [0,oo] . Thus,

D2A = (t) must be "bounded-input, bounded-output" stable. However,

, tj - "(t) may be "unstable" in that a bounded v(t) is allowed to
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result in unbounded z(t) . It is only necessary that bounded z(t) gives

bounded v(t).

It is possible that a simple linearization might do just as well in

practice, but this is a matter of chance, whereas this design technique is

guaranteed to work if the constraints are satisfied.

The constraint on W that P is mp, is required because only then

can one guarantee that any specifications no matter how narrow (A2 -A I

arbitrarily small but nonzero in Fig. 4-3), may be satisfied for arbitrarily

large but bounded parameter uncertainty (but some parameters must not change

sign [23]). No such guarantee can be made for nmp P, but the problem

is still solvable if the specifications are not too narrow and P is not

too large [(III a set.
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CHAPTER 5

A SECOND BREAKTHROUGH IN

QUANTITATIVE FEEDBACK SYNTHESIS

5.1 The Muliple Input-Output (mio) Problem

A very large number of control problems involve multiple inputs and

outputs, with each control input affecting all the output variables to some

extent. This is certainly so in many flight control nodes. In the n x n

case, there is a matrix of n2 system response functions to realize. In

realistic control, the n x n plant matrix has significantly uncertain

parameters. The real control problem is a quantitative one: to satisfy

specified 22tolerance sets on the 2n2  response functions ( n to

commnand inputs and n2 to disturbance inputs), despite the specified uncer-

tainties in the parameters of the n x n plant relations.

There is a vast literature on this mio (often denoted as "multivariable")

problem. However, nearly all of it deals with assumed perfectly known

plants, so the problem treated is securing the desired closed loop response,

under the constraint of a feedback structure around the perfectly known

plant. Just as in the single input-output case, the quantitative aspects--

the extent of the plant uncertainties and the performance tolerances (i.e.,

the very reasons for using feedback) -- do not enter as design parameters.

Stabilization of the resulting highly multiple-loop system is considered

a major undertaking. But note that this is being done for a perfectly

known plant matrix. Consider how much more difficult Is this stabilization

problem when the parameters of the n 2  plant functions have considerable

uncertainty-- not 10% or 20%, but hundreds or thousands per cent. Furthermore,
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such stabilization is only one part of the problem in genuine quantitative

synthesis. Stabilization is insufficient, for one must also guarantee that

each of the 2n2  closed loop input-output functions satisfy specified

tolerances, over the range of plant parameter uncertainty.

Thus, the quantitative Iti mio problem with large uncertainty has long

appeared to be intractable, except by cut and try. There has recently

appeared, however, an exact synthesis technique for this problem [23;

Appendix I of this report]. A highly attractive feature of this technique

is that for the n x n case, it consists of designing n distinct,

separate, noninteracting loop transmission functions and n2 prefilter

functions of the F type in Figure 3-1a. Thus, the n x n problem is

broken up into a number of separate single-loop problems. The interaction

between them is that of specifications. The tolerances on the output of one

of the single-loop problems, appear as "disturbances" in a different one.

It may be worthwhile to deliberately tighten the specifications on some of

the outputs, and thereby decrease some loop bandwidths needed, without

increasing any others. Sometimes there is trade-off, in that such tightening

decreases some but increases others. However, these do not affect the basic

isolation and noninteraction of the separate single-loop designs. They

affect the optimality of the designs in terms of loop-bandwidths needed to

do the job.

The above is a very desirable property of the design technique. The

stabilization of a feedback system containing a highly interacting, highly

uncertain n x n Iti plant becomes one of stabilizing n distinct, separate,

noninteracting single loops. But even more than that-- the quantitative

synthesis problem is solved. The apriori assigned performance specifications

on the 2n2  response functions are achieved over the entire range of

-74-
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parameter uncertainty. There Is no need for design Iteration after the

separate single input-output systems have been designed. This Is for

minimum-phase plants. In the nonminimum-phase case, the performance tolerances

must be compatible with the nonminimum-phase character of the plant, just as

in single input-output systems. The research work leading to the above

results was performed under AFOSR sponsorship [23], but because of Its

importance in flight control, is reproduced here as Appendix 1. Since then

we have gained somp experience with the technique and learned how to achieve

the trade-offs mentioned above.

5.2 Extension to Nonlinear Uncertain Multiple Input-Output Plants

The nonlinear design philosophy of Chapter 4 can be combined with that

of Section 5.1, giving a quantitative synthesis technique for highly uncertain

* nonlinear n x n multiple input-output plants. The essential features of

both synthesis methods are retained. Because of uncertainty, there is not

one set of n x n nonlinear plant relations, but an infinite class of such

sets. This class W is replaced by an infinite class P of n x n matrices

of linear time invariant relations. P is equivalent to W with respect to

the sets of acceptable outputs. To do this the nonlinear relations must be

solved backwards to find the plant inputs required to give the acceptable

outputs. The computer is an essential tool. Once P is available, the

problem becomes a quantitative linear time-invariant multiple input-output

one, for which the technique of Appendix 1 may be used. Section 5 of

Appendix 1 presents a somewhat more detailed outline of the procedure.
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5.3 Application of Nonlinear and Multivariable Synthesis Techniques to

Flight Control

In many of the Important operating modes, the flight control problem is

primarily one of regulation and control despite large uncertainty. It is

one of achieving desired trajectories as a function of time. It is not one

of minimizing some quadratic functional of states and control inputs. In

fact, in certain situations one wants to drive the control variables as hard

as possible. The justification nevertheless for use of optimal control

despite this and despite its ignoring parameter uncertainty and performance

specifications, is only that it provides a trial solution. But it is clearly

not a synthesis tool developed for the flight control problem. On the other

hand, the quantitative synthesis techniques outlined in Chapters 2, 3, 5

and illustrated in Chapter 4 for a detailed nonlinear problem, are very close,

almost tailored, to the flight control problem. For the first time in

feedback control history, there are available precise rigorous synthesis

techniques to cope simultaneously with all the following important factors

in the flight control problem:

I. time and frequence domain tolerances on the output variables;

2. large parameter uncertainties;

3. highly nonlinear plant relations;

4. strongly interacting multiple input-output plants;

5. tolerances which are functions of the command inputs, i.e., a desired

nonlinear closed-loop system.
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APPENDIX

QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE

INPUT-OUTPUT FEEDBACK SYSTEM

Isaac Horowitz

ABSTRACT

There is given an n input, n output plant with a specified range of

* parameter uncertainty and specified tolerances on the n system response to

command functions and the n2 response to disturbance functions. It is shown

how Schauder's fixed point theorem may be used to generate a variety of

synthesis techniques, for a large class of such plants. The design guarantees

the specifications are satisfied over the range of parameter uncertainty. An

attractive property is that design execution is that of successive single-
loop designs, with no interaction between them and no iteration necessary.

Stability over the range of parameter uncertainty is automatically included.

By an additional use of Schauder's theorem, these same synthesis

techniques can be rigorously used for quantitative design in the same sense

as above, for n xn uncertain nonlinear plants, even nonlinear time-varying

plants, in response to a finite number of inputs.

* of
Cohen Professor/Applied Mathematics, Weizmann Institute of Science,

* Rehovot, Israel, and Professor of Electrical Engineering, University of Colorado,
Boulder. This research was supported in part by the U.S. Air Force Office of

Scientific Research, Grant No. AFOSR-76-2946B at the University of Colorado.

tNote: The Appendices to this paper are omitted here. They are available

in E23]. .
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE

INPUT-OUTPUT FEEDBACK SYSTEMS

1. INTRODUCTION

There is great interest in multiple input-output (mio) feedback systems,

for obvious reasons. A great deal of significant work (too numerous to list

but [l-10] are representative and include bibliographies) has been done,

primarily in the realization and properties of the closed-loop input-output

relations, under the constraint of a feedback structure around the known,

fixed mio "plant." There has been notable work done with uncertain inputs,

but again only with fixed, known plants. Of course, plant uncertainty is

always implicit, if only because of the usual approximations required to

obtain a linear time-invariant model.

In any case, there does not exist as yet any "quantitative synthesis"

technique for the mio problem with significant plant uncertainty, even for the

linear time-invariant case. By "quantitative synthesis" is meant that there

are given quantitative bounds on the plant uncertainty, and quantitative

tolerances on the acceptable closed-loop system response. The objective is

to find compensation functions which guarantee that the performance tolerances

are satisfied over the range of the plant uncertainty. In "quantitative

design," one guarantees that the amount of feedback designed into the system

is such as to obtain the desired tolerances, over the given uncertainty range.

In other designs, the amount of feedback may be more or less than necessary--

it is a matter of chance. The practical experienced designer may find the
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latter approach sufficient. However, a scientific theory of feedback should

certainly include quantitative design techniques.

In this paper it is shown how Schauder's fixed point theorem can be

used to generate a variety of precise quantitative mio synthesis techniques

suitable for various problem classes. An outstanding feature of each 'synthesis

procedure is that it consists of a succession of direct (no iterations

necessary) single-loop design steps. Furthermore, by a second use of

Schauder's theorem, the techniques are rigorously applicable to quantitative

synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included.

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1, P = [pij(s)] is a n x n matrix of the plant transfer functions

in the form of rational functions, each with an excess e > 0 of poles over

zeros, and with a bounded number of poles. The pij (s) are functions of q

physical parameters, with m an ordered real q-tuple sample of their values.

M = {m} is the class of all possible parameter combinations. The elements of

the n x n lti compensation rational transfer function matrices F = [fj.(s)],

G = (gij(s)] are to be chosen practical (each with an excess of poles over

zero). They must ensure that in response to command inputs the closed-loop

transfer function matrix T = [t uv(s)] (of c = Tr) in Fig. 1 where c,.r are the

n x 1 matrices (vectors) of system outputs and inputs, respectively, satisfy

conditions of the form

0 < Auv(W) : Ituv(JW)I : Buv(w),VmEM
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If the t uv(s) have no poles or zeros in the right half-plane (are stable and

minimum-phase), then t uv(s) is completely determined by It u(JW)f, so (1)

suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain

tolerances of the form

uM ,d Vc(t)< vt1 dtv  -

V = 0, 1, ..., nI any finite number, can be satisfied by means of tolerances

like (1) on Ic(jw)I, where c(s) = fc(t). The writer finds it much more

convenient to develop the synthesis theory in the frequency domain, and the

above proves its sufficiency for time-domain synthesis.

This presentation concentrates on the command response problem, but the

same ideas can be used to handle the quantitative disturbance response problem

under plant uncertainty, as will be shown in Sec. 6. The constraints on the

plant and the specifications are introduced as needed, in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1, there are available n2 loop transfer functions in L =

[ij (s)] = PG, and n2 f.ij in F for satisfying the tolerances (1) on the n
2

t i. But In the expansion of T = [tij (s)] = (I + L)- ILF, each tab(sm)

(m4t) is a function of all the ki (s,m) each uncertain, resulting in very

complicated expressions for tab and making direct quantitative synthesis

seemingly impossible--at least so far unsuccessful. The objective here is

to convert each tab(s ,m) design problem into an equivalent single-loop problem

with uncertainty. This is done for each tab, by lumping all the other inter-

i;.-82-
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acting tij variables into an 'equivalent disturbance', as follows.

In Fig. 1, c = PG(Fr - c), so

(p-1 + G)c = GFr. (2)

Hence, the following restriction on P:

(Pl): A(s) determinant P(s) f O,VmsM.

Let rv V 0 and ri  0, i # v, so the resulting c.(s) = tjv (s)r . Let

P- = [Pij(s)]. (3)

The uth element of (2) is then

n
rv(s) (Pui + gui)tiv = guifiv

To simplify the presentation, we take gui 0 for u / i (although in practice

it may be useful not to do so). Then letting rv (s) = 1, the last equation can

be written as

f d uv

Puu uuv Puu T d (4a)

1 + P--
UU

duv = A P (4b)

This corresponds precisely to the single-loop problem of Fig. 2, with

Puve I/Puu. Of course, the tiv in duv of (4b) are not known but the bounds

(1) on ItivI are know5 generating a set Duv = {duv}. We define the extreme duv

Id = eIsupT iIBivI, B. of (1) (5)
iu l
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Suppose we can find g uu(s) and f uv(s), such that in the notation of (4,5)

0 < IT uv I ±TduvI~duveIr [Auv, 8uv],VmM' (6)

Then the magnitude of the right side of (4a) c[A uv, Bu] for all meM and for

all possible combinations of tiv (i t u) which satisfy (1). Suppose this is so

Vu,v combinations, and the other Schauder conditions of Sec. 2.1 are

satisfied. Then Schauder's fixed point theorem can be used to prove that

these same n guu and n2 fiv are a solution to the synthesis problem (1).

2.1 Application of Schauder's Fixed Point Theorem

This theorem states that a continuous mapping of a convex, compact set of

a Banach space into itself, has a fixed point (Kantorovich and Akilov 1964).

We define the Banach space to be the n2 C[O,] product space denoted here by

C(n2), with norm = Z individual sup norms. C[O,c] is the Banach space of real

continuous functions f(w), wc[O,J with Jlfif = sup If(w)f. The convex compact

set in each of the n2 C[O,c] is taken as the acceptable set of Ituv(Jw)I satis-

fying (1), denoted by (h e()} = H U. Additional constraints have to be assigned

to the he (w) in order that each Huv set is compact and convex in C[O,]. These

constraints have been justified in detaii in (Horowitz 1975) and are therefore
2

only summarized here. If each set is convex and compact in C[O,o], their n

product set denoted by H(n
2) is convex and compact in C(n2).

Constraints on H {h(w)}
______uv uv

l. continuous functions A (w), Buv () with properties of (1) as

bounds on h(w)

2. h'(w) is uniformly bounded: 3 KJ) 3 )h'(w)l <K, Y h,w
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5I

3. h(w)-+o as w- in the form k/we, e a fixed finite number )3 to allow

at least one excess of pole over zeros for the elements of F,G,P in Fig. 1.

These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-

tude of a function h(S)s= w which has no zeros or poles in the interior of

the right half-plane or on the jw axis. Arg h(jw) is obtained from h(w)

by anyone of a number of Bode integrals (Bode 1945).

An element of H(n2 ) consists of n2 positive functions on [0,-], h k(w).

Using any appropriate Bode integral, find the associated phase function denoted
here by arg[hik(w)], giving the minimum-phase stable function h ik(s),

hik( jw) = hik(w) + j arg[hik(w)]. For future use, denote this sequence of

operations whereby h(w) is transformed into h(jw), as the "Bode transformation"

B(h()). Define o on H(n ) by

S= (i,12, --,*nnl: H(n2) H (n2) *uv(h1,ll 2, h .12 h r)

uufuv -iu PuiB(h iv())

u(7)
Puu (1 + uPu

uu

using for Pui' Puu any specific fixed mEM. (Note the similarity of (7) to(4ab)).

In Appendix 2, it is shown that guu" fuv can be found such that ( maps

H(n ) into itself. It is also necessary to prove D is continuous, as follows.

0 is a continuous mapping

is continuous if each of its n2 components is continuous. The first step

in each mapping is B(h iv(w))= hi(Jw). In (Horowitz 1975, Sec. III) it is proven

that the step h iv( )- arg h iv(w)4iv(w) is continuous in the C[O,) norm. Hence,
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the mappings h iv(w)- hiv(w) cos iv(w)Aiv(w), hiv(w) hlv(w) sin eiv(w)

AXiv(w) are continuous. The denominator of (7) is a constant on H(n2 ), and

so are guu fuv and the Pui in the numerator. Thus, the numerator has the form

Num. = 1Ka + jK - E(C i + JDi)(Ri + JXi()),j = 1--i,

all other terms real and only theA i, Xi mappings on H(n
2). Infintesimal changes

in i , Xi clearly result in similar change in Num., so Num. is continuous on

H(n 2 ) and so is each uv of (7) and hence 4,. The conditions in Schauder's theorem

are satisfied, so 4) has a fixed point.

This means 9 a set of hi(w) denoted by hi(w),

guufuv -Iu Puihiv()

huv(W) = I Vu P h() (8)

guuI P UP( + P---)

u,v = 1, ..., n, where h. (jw) = B(hi (w)).iv iv

We would now like to deduce from (8), that

g uu fuv P Z ui h uvOW )

B(h* (w)) = h* OW) u u (9 ~h (wuv uv g
P (I  + uu)
uu P

uu

For, if (9) is true, then by letting huv(jw) = t (jw), we have recovered (4)
2^*

and the n2 hu(J) are a solution to the mio problem for that specific mcM.

The solution is unique if every building block in the mio system has a unique

output for any given input, which is a very reasonable condition. This makes
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it unnecessary to prove that there are no transitions from (8) to an

expression similar to (9) but with right half plane poles and/or zeros. Since

m is any element of M, this is true for all mcM (of course with a different

set of h for each m).

The step from (8) to (9) is a crucial one and must be justified with great

care. Given an analytic function O(s), there is an infinitude of *(s) such

that l0(jw)l = J*(Ji)I, w E[O,o], e.g.

(0 - Ti S ) (I + T2s)
(s)= *(s) (I + T1

s) TT - s)

But *(s) ip(s) even though l¢j(Jw)jI i (Jw)I • But suppose we know from other

sources that *l(s) has no right half plane zeros or poles, then given

l~lj ) M(w) a magnitude function which is Bode transformable, we can

conclude that *1(jw) B(M(w)) = M(jw). Hence, to justify (9) we must prove

that the expression inside the vertical bars in (8) has no right half-plane

zeros or poles. The pole part is easy, because 1 + guu/Puu is obviously

designed to have no right half-plane zeros; certainly guu, fuv won't be

assigned any such poles; h iv(s) doesn't have any by definition, and Pui is not

allowed any such poles--see Sec. 3.1. To prove the zero part, note that from

(6) and Rouche's theorem, the number of zeros of the right side of (9) in the

right half-plane, equals such number of

guu uv

Pu(l +
uu uuu

-87-

, Ni . . .



r

which is easily made zero in the single-loop synthesis steps (if Puu has no

right half-plane poles, a condition necessary for other reasons--see Sec. 3.1).

Thus, the expression inside the bars in (8) has no right half-plane poles or

zeros, justifying (9). This is a very valuable result. The problem of

stabilizing a highly uncertain n x n mio system is automatically disposed of in

the synthesis procedure, which is furthermore one of designing n single-loop

transmission functions.

It is worth noting that even if the above proof were not available, it

would not be disastrous for this synthesis theory. It would only be necessary

to guarantee that at one mEM, the system is stable and minimum-phase. For

then, this would be soymEM, because by the continuity of the poles (and zeros)

with respect to the parameters, the right side of (8) would have to be infinite

(zero) at some w, in order that for some mcM the system should be unstable

(or have a right half-plane zero). However, the synthesis procedure by

definition precludes this. And it is a relatively easy matter to guarantee

the desired conditions at one mEM.

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find g uu and fuv to satisfy

(6)V w, all u,v pairs and all mqj (b) that each equivalent single-loop design

is stable and minimum-phase V mefj. These lead to constraints on the mio plant,

obtained by applying single-loop design theory to achieve (a,b). Appendix

gives an existence theorem for single-loop design. The first part of the design

(see Appendix A3) gives bounds on the nominal loop transmission which is

guu/Puuo of (4a), where Puuo is the 'nominal' associated with a nominal moli.
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These bounds must be satisfied in order that a specific system transfer

function tuv satisfy (1). Here guu/P uuo is used for n tuv (v =l...,n)

functions. It is proven in A3, that a guu /P uuo can be found which satisfies

the conditions for all n tuv functions.

For example, consider tul at w = w1 and suppose Aul(wl) = .9, Bui(wl) =

1.1 in (1). We could split this range [.9, 1.1] into say [.95, 1.05] for Tul

and .05 for T-dul dul in (4), using dule of (5) for dul* The technique in A3

or better (Horowitz and Sidi 1972), is then used to find a bound on gu(iwl).

uuuHere, we note a tough constraint. Sooner or later in w, lguu(Jw )l must become

very small with 1 + guu/Puu - 1 and then in (4a)

. guufuv duv (10)tuv Puu ;

and in (7), u the numerator of its right side divided by P uu. Now (4a, 5, 6)

in general require that

I tuvImax > 2 1Tduvduvel (11)

But ItuvImax = Buv and at high frequencies

sup
d M i IPui1IBivI

To see what this leads to take, for example, n = 2 so that the above applied

to v = 1, u = 1,2 gives

2 p1 I1B21  2jP 21 B11
Bl >  1 B
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requi ring

S 41P 12P21 1 as (12)

Thus, a constraint on P is

(P2 a): 3 wh' ) for w > wh' IPIIP 2 2 I > 41P 1 2 P2 1IVm"M. (13)

It is known that as s ,

k.•
ei

S

so the above becomes

Ik11 k2 2 1 41k 1 2 k2 1 1

e 11 +e22  e 1 2+e21

If the uncertainties in the k are independent and ell + e2 2  e 2 + e

this becomes

kllmink22min > 4k 2maxk21max .  (14)

There is an important problem class for which the inequality is less

harsh. This is the "basically noninteracting" class, where one ideally desires

ti . 0 for i j, but because of uncertainty accepts A.. : 0, It.. < B..

for i j, in (1). Also, one doesn't care if tij (i f j) is nonminimum-phase.

Condition (6) then applies only to u = v. The fuv (u # v) are set equal to

zero and (13) becomes

J h' 1, 1P1 1P221 > 2PI1 2P2 11 mcht, w > wh" (15)
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It is desirable to ease inequality (13) in the general case. Note that (6)

can be satisfied over any finite w range by making 1l + guu/P uI large enough.

Thus, as previously indicated, one can split the [Auv,Buv tolerance so that

ITuvI > ITduvIIduvelVmcM, e.g. assign ITuvI c [E- e, E + el with

E = (Auv + B u)/2, 2e < Buy - Auv and the balance (Buy - Auv - 2c)/2 is assigned to

Tduvduv of (4a). But I1 + guu/PuuI must then be made large enough to satisfy

the resulting requirements, and it can for any finite w range. The trouble is

that guu must be allowed to -, zero as w * =, leading to (13), etc., if we

insist on (6). We could ignore (6) at large w, say for w > NH' with H as

large as desired but finite, letting ITu v << ITduvIlduvel for w > wH" Then

for > H' (11) is replaced by the weaker

Ituvlmax > Ilduvduve (16)

and for n = 2, (13) is then replaced by

(P2b): 3 wh' 4 for w > wh' IPIP 22 l > IP12P211'ymeMA (17a)

An important question is whether (17a) is an inherent basic constraint in the

presence of uncertairity, no matter what design technique is used, or is due

only to this specific design technique. The methods suggested in (Rosenbrock

1974, Owens 1978) to achieve diagonal dominance, may be helpful in satisfying

(17a), but they would have to be extended to uncertain plants. Note that in

Rosenbrock 1974, Owens 1978), diagonal dominance is desired V w e [0,-),

whereas in (P2b) it is required only for w > wH"

For the analog of (17a) at n = 3, it is found that diagonal row dominance
L of p- for w > wH' is a sufficient condition. The necessary condition can be

written as
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H, )for w > wH IPPjj.>I I>jPj and

lPlIP331 > (P12P 231 + IP13P221)(IP 22P311 + Jp2lP32 ) (17b)

which can be written as,

IP11P22P331 > 1PllP 23P32 1 + IP12P21P33 1 + IP12P23P31 1

+ IPI3P22P311 + P13P21P321 for w > N (17c)

The latter has the following intepretation. Array the matrix P-1 in the usual

manner, but twice -one under the other as in Fig. 3a. Then the terms on the

right side of (17c) consist of the products of the entries crossed by the

dashed lines.

However, if wH is so used, it is no longer possible to use Rouche's

theorem and thereby prove each t.. is minimum-phase. But we can still design

so that the nominal t i are minimum-phase and we know from (6) that tij(jw) # 0

for wE[OwH]. Therefore, from the continuity of the zeros of tij with respect

to the parameters of the system, if tij has any right half-plane zeros, they

must enter the right half-plane as shown in Fig. 3b. It is unlikely that such

a zero which must migrate all the way up to JwH' should move back into the

significant control bandwith region A. The point is that if right half-plane

zeros are "far-off", they have little effect and the system is "dominantly"

minimum-phase.

.
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Rouche's theorem can still be used if we can guarantee that (6) is

satisfied for a semicircle consisting of the segment [-jwHlwH] and the right

half-plane half-circumference of the circle of radius wH, centered at the

origin. Then, there are definitely no right half-plane zeros of t i in this

half-circle, and the system is "dominantly" minimum-phase This is quite

practical in the design technique of (Horowitz and Sidi 1972), discussed in A3.

3.1 Modification of mapping 4

Note that for the "dominantly minimum-phase" and the "basically noninter-

acting" cases, the application of Schauder's theorem in (2.1), Eqs. (7-9), etc.,

needs modification, because nonminimum-phase tuv (jw) cannot be uniquely

derived from Ituv(jw)l. Redefine h c Huv of 2.1 to consist of an ordered

pair: h(w) as before and q(w), the imaginary part of h uv(W) with

h = huv (Jw)l; h E Huv the same as before but q(w) c C [0,o) with

0 < jq(w)j < h(w). Constraints 2,3 in 2.1 on h(w) also apply to q(w). Let

(HQ)uv CC 2 [0,-) denote the set {(h(w), q(w))} with 11(h,q)lH = tihil + jjqil-

Obviously, (HQ)uv is compact and convex in C2 [0,w). The extension to the

n2 product set is straightforward.

The mappings *uv in (7) are redefined. Each 4iuv is a pair of mappings,

one the absolute value as before, the second the imaginary part with the

absolute bars on the right removed. On the right side of (7), B(hiv(w)) is2 2 2
replaced by r. (w) + jqiv(w), with hiv = riv + q2 h

v iv v v iv, iv) H~v

LJ. It is necessary to prove that 0 maps each element of (HQ)uv into itself.
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The proof follows immediately from that for the minimum-phase case -- this

is obvious from (6), the definition of duve in (S), and Appendices 1,2. The

proof that f is continuous is straightforward. Accordingly, the Schauder

conditions are satisfied and there exists a fixed point which satisfies the

specifications. Such specifications, by themselves, would not be good ones

because they permit highly nonminimum-phase t (s). However, they areuv

satisfactory if it is known from other sources that tuv is "dominantly

minimum-phase".

3.2 Additional Constraints on P

Constraints Al(l)-(3) in the Appendix, must be applied to the lPuu,

since in Fig. (2) puv 1 - p of Appendix. Al.1 requires that there be

no change in the excess of poles over zeros of l = 
- where A= det. P

Puu Auu
and Auu its uuth minor, as m ranges over j. Also, that for at least one

mEsJ, denoted by mU0 , Puu has all its poles and zeros in the interior of the

left half-plane. The muo can be different for each u.

Al.2 requires that I/Puu is minimum-phaseV mcA, and its zeros do not

get arbitrarily close to the jw axis. Since l/Puu = A/A uu, this means A must

have no right half-plane zeros. Hence the Pij in general have no right

half-plane poles. (For those who wish it, P is restricted to be controllable

and observable V mef, but these concepts are unnecessary if P is properly

formulated in terms of physical uncertain parameters (Horowitz and Shaked

1975)). Since the pij in P = [pij] are finite rational functions, the latter

part of Al.2 is automatically satisfied.
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Al.3 for n =2 is the same as (17), which shows that (17) is a

fundamental condition for linear time-invariant design, not an "extra"

condition due to our design technique, at least for n = 2. However, (13)

is an "extra" condition. Note, the extension of single-loop design to

disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in the mio plant functions.

4. OTHER DESIGN EQUATIONS

The previous design equations constitute only one of many

design techniques derivable from Schauder's fixed point theorem. Only -

two more will be briefly mentioned here.

Both are based on the use of a nominal diagonal loop trans-

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output

terminals are numbered. If G is made diagonal, such numbering is

important and after one arbitrarily numbers the plant input terminals,

he should try to number the outputs such that the main effect of in-

put i is on output i. Manipulation of (2) somewhat differently from

Sec. 2, gives

f Z v1.t l1 6 11 Lo = P 0G

t f11 11/611 +iV1liP = [P. 1(8
11 1 +21/10 1)

I.f Z. /6 + Z v 2i t il /622 ' etc.
t 2 21 22 22 i ?

1+ 2221622
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whereV= ] = [v 1  P is the 'nominal'plant matrix and there-

fore fixed, P is the general uncertain plant matrix, 6.. = 1 - vii.

The X are the nominal elements of the loop transmission matrix L.

Eqs. (18) lend themselves to single-loop design and use of Schauder's

theorem, precisely as did Eqs. (4).

Another interesting set of design equations is obtained by de-

signing to control the changes in t i, rather than tij directly. Let

To = [t ijo  be the 'nominal' system transfer matrix and T = [ti 1 the

actual which is uncertain, AT =[Ati 1 T - T . Then it can be shown

that

AT = (I+L) -I VT, V =  -1-P (19)
0

where 0 are likewise the 'nominal' and uncertain plant transfer

matrices, and L =2 G = [z ij1 is the nominal loop transmission matrix.

If L is taken diagonally, the result is (n + 2 for simplicity)

At1  = 1" t11 + v1 2t21  V At v11 t12 + v12t22  (20)I + Z = l + k'II

and similar obvious ones for At21, At22.

The design problem is now completely one of disturbance

attenuation, with the disturbances d v t + v t etc., whose

range is known. Schauder's theorem is applicable in the same manner
I.

as before. Note that V represents the 'normalized' plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once
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the At.,. tolerances are formulated) than (4), and their use needs to

be intensively researched. However, both for (18) and (20) the con-

straints considered in 3., leading to (11-15) must be found, and

these may possibly be tougher than before. Also, both a nominal ?

and T must be chosenjwhich is not goodjbecause the optimum pairing

is not apriori known. However, the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimization

An important criterion for comparison of design techniques is

their "cost of feedback," which we take as the bandwidths of the

loop transmission functions--because they determine the system

sensitivity to sensor noise. Obviously, quantitative synthesis

techniques must first be invented before one can turn to their op-

timization (for without such quantitative techniques comparison is

possible at best, by analysis after a specific numerical design has

been made). This approach via Schauder's theorem promises to generate

a variety of such techniques, and the next step will be optimization.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are p.j = kij/(l+sAii ) with correlated

uncertainties, giving a total of 9 parameter sets in Table 1. The

design was performed to handle the comvex combination generated by

these 9 sets (Figure 6).
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TABLE 1

No. k 11 k22 k12 k21 A11 A22 A12 A21

1. 1 2 .5 1 1. 2 2 3

2. 1 2 .5 1 .5 1 1 2

3. 1 2 .5 1 .2 .4 .5 1

4. 4 5 1 2 1. 2 2 3

5. 4 5 1 2 .5 1 1 2

6. 4 5 1 2 .2 .4 .5 1

7. 10 8 2 4 1. 2 2 2

8. 10 8 2 4 .5 1 1 2

9. 10 8 2 4 .2 .4 .5 1

A "basically noninteracting" system is desired, with the off-diagonal

transmissions specified in the w-domain It12(J ), It21(J)<0.l Vw. The

diagonal tll, t22 bounds are identical and were originally in the time-

domain in the form of tolerances on the unit step response shown in

Fig. 4a, b (which also shows the design results for those of the 9 cases

which were reasonably distinguishable). These time-domain bounds

were translated into the "equivalent" bounds on Itii (jw)l shown in

Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).

Familiarity with quantitative single-loop design is assumed

here. One can do a problem of this complexity by hand. The

sets 1Piie (jw)}, called the plant templates, are obtained on the

Nichols chart. Some of these templates of 21l -A 2 22 A

11 P22 "11
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are shown in Fig. 6 at various w values. The larger the template,

the greater uncertainty at that w value. The tolerances on t of

(4a) and Fig. 5 were divided between T uu and Tduuduu as discussed in

Sec. 2. Each of these, in conjunction with the templates, leads to
= . Some of these

bounds on the nominal loop transmission t uo o e

bounds on kiio' due to Tll, are shown as solid lines in Fig. 7, i.e.,

it is necessary for filo to lie above the indicated boundary. The

tolerances on Tduud uu lead to the dashed line bounds on 1l11" No

attempt was made to optimize the division of the tolerances between

T and tdll d ll* The composite bound on 1110 must satisfy both.

The 9lo(jw) chosen is also shown in Fig. 7. There was no attempt

made to optimize the Iiio; the design was made by hand quickly, so

the .iio w) are larger than need be, with the tolerances therefore

satisfied better than necessary--as seen in Figs. 4a, b. Optimal

Yiio(jw) would lie on their boundariesat each w, so in this

example there is considerable overdesign.

Here we took

11o 10 (l+.007s)
11o = 22 s (1+.025s) l+s _ ___

P220  1. 0 +(4)2
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wi th

0 - .75 (1+3.66s)

P22o (l+s)(1+3s)

o 9 (1+.02s) r
22o f PIio '22 s (1+.ls) lI+s s2

150 0150)2i

with

A0  - 1.5 (1+3.66s)

fI1o (l+3s)(l+2s)

The requirements on f11 f22 (f12 = f = g12 = g21 = 0 here) were

found using single-loop design technique [15] as briefly explained

here in A4, and

fl 1 1 + .5s ' f22 = 1 + .33s

were found satisfactory. The system was simulated on the digital com-

puter with the results shown in Figs. 4a, b. The t12, t21 tolerances

were easily satisfied by the design.

While this is not a very challenging example of the design techni-

que, nevertheless the uncertainty is very large and one should consider

how quick, simrle and straightforward was the design procedure, and

also consider what alternatives are offered in the mio literature.

There are no other techniques available for systematic design to

specifications in the presence of significant uncertainty which

I.o guarantee design convergence and attainment of design tolerances.
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Whatever present popular technique is used, it would be necessary

to cut and try and endeavor to understand the relations between the

cutting and the results as one continued to cut and try, because

these techniques have no provision for significant uncertainty. In

the above design, one sweep was known to be sufficient because the

plant and the design tolerances (w-domain) satisfied constraints,

PI etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

Once there is a quantitative design technique for linear time

invariant mio uncertain plants, it appears at least conceptually

possible to extend it to a significant class of nonlinear, even

n'onlinear time-varying, uncertain mio plants. The procedure is a

generalization of that used (based also on Schauder's theorem)

in (Horowitz 1976) for single loop uncertain nonlinear systems.

The key feature is the replacement of the nonlinear plant matrix

set (a set because of the uncertainty), by a linear time invariant

plant set which is precisely equivalent to the original nonlinear

set, with respect to the acceptable system output set. The pro-

cedure is briefly presented for the case where one wants the system

with nonlinear uncertain plant to behave like a linear time-invariant

system for a specified class of conmmand input sets.
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It is essential that the command input sets represent a good

sampling of how the system will actually be used. For example, suppose

n 3 and in actual use r1 , r2 always exist simultaneously (with

r3 . 0), and r3 appears by itself (with rI = r, = 0). Say there are

ten typical r1(t) inputs and for each typical rI(t) there are five

typical r2(t). This makes a subtotal of 50 input sets, to which is

added the number of typical r3(t) say 10, giving a class R = {F} of

60 sets, of which 50 have the form r = (r,, r2, 0) and F = (0, 0, r3)

for the balance. Choose 1ER. The family of acceptable outputs for

this input, is known from the tolerances on tij, giving for that one

input vector a family H = {h}, i = (hl, h2, h3). The mio plant is re-

presented by a family (because of parameter uncertainty) W of nonlinear

differential mappings

&je {W}, W = (Wlw 2,w3)jcl = w1 (x2,x2,x3,m), . . , c3 =

w3(xI,x 2,x3,m), where the x2 are the plant inputsc i the plant outputs,

and m is the plant parameter vector mcM.

Take a sample acceptable outputtriple h = (1l, h2, h3 ) and find

the corresponding plant inputs at some specific mEM (or in other words,

pick a WW) and let cj = hi and solve the nonlinear equations backwards,

giving the input set (xl, x2, x3 ). Take the Laplace transforms i(s)

of X., f.(s) of h. giving the vectors i[s] = ( s(S), X2(s), X3 (s))

fi~s] = (fiI(s), . . , fi3 (s)). Repeat for other h samples in the

acceptable output set H, giving two paired families of RIs], n.[s].
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Select any combination of three x[sl, forming a 3 x 3 matrix k and

corresponding paired combination of three fi[s], forming the matrix H.

Set H = PX and solve for P = N(X)-. P is the linear-time-invariant

equivalent of the specific We( picked, with respect to the specific

trio of acceptable output vectors picked. Repeat over different

trios. Repeat the entire operation over different we(, giving a

class P = {P) which is the linear-time-invariant equivalent of the1

W family, with respect to the class of acceptable outputs H for in-

put vector I. Repeat the entire operation for r2, . . . ,60 giving

{ = total which is the linear time equivalent for the nonlinear

( with respect to the tribe of 60 families of acceptable output sets.

The equivalence is exact if the conditions for application of

Schauder's theorem are satisfied. We now have a linear time-invariant

uncertain mio problem, which let us presume we can solve. If and only

if we can guarantee the solution of the latter, then the same compen-

sation functions will work for the original nonlinear uncertain mio

plant. Hence the importance of quantitative linear time invariant

design techniques (over and above their intrinsic importance)--for they

enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforward and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential
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tool. Conceptually too, it appears possible to extend the method to

obtain nonlinear relations between inputs and outputs within specified

bounds, despite large plant uncertainty, even nonlinear time-varying,

as can be done for the single input-output case. The prospect

is fascinating. Imagine being able to work with the actual nonlinear

equations of a jet engine, or a chemical process, etc., include un-

certainties in the modelling, even uncertainty in system order (see

Appendix), and designing to achieve outputs within specified tolerances

over the given range of uncertainty.

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nxl matrix of disturbances. The resulting

system output (with r = 0) is c = (I+PG) "l Px - Zx, Z = [Zig], the nxn

disturbance response matrix. Bounds on Z are given in the form

IZuv(Jw)I< buv(w) , V mEX (21)

Rewrite c = Zx in the form (P-1 +G)c = x. Let xi # 0 only for i = v, so

ci =zivxv
, and

n
(Pui + g .)Z. =v u = v)

ul l IV v l u Vi=l

u (Pi

uu + gu u  u v 6= 6v - (i u

itu

|= . - .i (Pui +ui)Ziv

Z = (22), -v Puu(l +guu)
uV P U UU
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Let
P + g

Xuve-(W) sup p I ilbiv(W) (23)
m i#u uu

The gui(w) (iu) can be chosen to minimize xuve(w), but for simplicity we shall

assume them zero. From (22,23)

6U/P + x
IUU=)1< I ( + g uve (24-)1

(1+ U)
UU

If I/Puu satisfies the constraints listed, then it is obviously possible

to guarantee Izuv(w)l < any finite number, no matter how small, at any finite

w. Also it can be made zero at a finite number of w values by assigning poles

to guu at these values. Assume that guu can be chosen to satisfy (21)

w c [0,-). Then one can set up the conditions for Schauder's theorem,

precisely as was done in 2.1. The set buv ) must have been formulated such

that B(n2 ), the n2 product set of the buv(w), is compact convex in C(n2)j

analogous to H(n2) in 2.1. The analog of @ in (7) must be formulated

with the modification of Sec. 3.1, inasmuch as we do not care if the z (s) are
uv

nonminimum-phase.

Conditions analogous to (12-17) for n = 2, are obtained as follows.

As w - -, guu/Puu - 0 so in (24), the right side - its numerator. But

Izuv(jw)l < buv() of (21). Let u = 1, v = 2 and then u = 2, v = I and

obtain the necessary condition (for g,2 = g21 = 0),

Asw-*.0- , pzP21 < PlIP 22 , V mEA (25)
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similar to (17) but here only at , because there is no concern with the

minimum-phase property. Setting u = v = 1, and then u = v = 2 in (24), we

get the conditions
i lP2 Pl 2P211 (6

As w , b11 > = IPl P221 , b22 > IP 2 2 - (26)
P22 P11

But in reality as w - , c Px so Z - P and z - P1l z22  P22. Hence,

assignment of bi (as w c-a) to satisfy (25) is no obstacle, because the buv(W)

are upper bounds on the Iz (J)j.uv
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Fig. I Multiple input-output two matrix degree-of-freedom feedback
structure c = Tr, T = [tij], c = [c ... Cn]', r = [r 1 .. rn1'.

-4'r

Fig. 2 Single-loop structure equivalent, for synthesis of tuv;

d v 'utiv, P

f uvguuPuve Puveuv = I +g uuPuve "Eduv + g uuPuve

Fig. 313 To reach A in right half-plane, a zero must cross j,, axis
, ), -above J,1H .
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